हिंदी

For What Value Of K The Following Distribution is a Probability Distribution?X = Xi :0123p (X = Xi) :2k43k2 − 5k32k − 3k23k − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1
टिप्पणी लिखिए

उत्तर

We know that the sum of probabilities in a probability distribution is always 1.

∴ P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) = 1

\[\Rightarrow 2 k^4 + 3 k^2 - 5 k^3 + 2k - 3 k^2 + 3k - 1 = 1\]
\[ \Rightarrow 2 k^4 - 5 k^3 + 5k = 2\]
\[ \Rightarrow 2 k^4 - 5 k^3 + 5k - 2 = 0\]
\[ \Rightarrow \left( k - 1 \right)\left( k - 2 \right)\left( 2 k^2 + k - 1 \right) = 0\]
\[ \Rightarrow \left( k - 1 \right)\left( k - 2 \right)\left( 2k - 1 \right)\left( k + 1 \right) = 0\]
\[ \Rightarrow k = - 1 , \frac{1}{2}, 1, 2\]
\[\left( \text{ Neglecting }  - 1 , 1\text{  and 2 as they give the value of probability negative or greater than 1 }\right)\]

∴ k = \[\frac{1}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Mean and Variance of a Random Variable - Very Short Answers [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 32 Mean and Variance of a Random Variable
Very Short Answers | Q 2 | पृष्ठ ४५

संबंधित प्रश्न

Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}kx & , & if x = 0 or 1 \\ 2 kx & , & if x = 2 \\ k\left( 5 - x \right) & , & if x = 3 or 4 \\ 0 & , & if x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.                         


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi: 0 1 3 5
pi :  0.2 0.5 0.2 0.1

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .  


If a random variable X has the following probability distribution:

X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

then the value of a is


A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following: 

Age x 0 1 2
lx 1000 880 876
T - - 3323

Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3. 


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-

(a) No defects
(b) At least one defect 
[Use e-1 = 0.3678]


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.


Find the mean and variance of the number randomly selected from 1 to 15


A random variable x has to following probability distribution.

X 0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×