हिंदी

Find the Mean and Standard Deviation of Each of the Following Probability Distribution:Xi : 1345pi: 0.40.10.20.3 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 

टिप्पणी लिखिए
योग

उत्तर

xi pi pixi pixi2
1 0.4 0.4 0.4
3 0.1 0.3 0.9
4 0.2 0.8 3.2
5 0.3 1.5 7.5
    `∑` pixi = 3
 
`∑`pixi2=12

\[\text{ Mean }  = \sum p_i x_i = 3\]
\[\text{ Variance } = \sum p_i {x_i}^2{}_{} - \left( \text{ Mean}  \right)^2 \]
\[ = 12 - 3^2 \]
\[ = 3\]
\[\text{ Step Deviation } = \sqrt{\text{ Variance}}\]
\[ = \sqrt{3}\]
\[ = 1 . 732\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Mean and Variance of a Random Variable - Exercise 32.2 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 32 Mean and Variance of a Random Variable
Exercise 32.2 | Q 1.2 | पृष्ठ ४२

संबंधित प्रश्न

State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

Find the probability distribution of number of tails in the simultaneous tosses of three coins.


A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine P(X ≤ 2) and P(X > 2) .


Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .  


Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:

Xxi: -2 -1 0 1
P(Xxi) :
\[\frac{1 - a}{4}\]
 
\[\frac{1 + 2a}{4}\]
\[\frac{1 - 2a}{4}\]
\[\frac{1 + a}{4}\]

Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


If X is a random-variable with probability distribution as given below:

X = xi : 0 1 2 3
P (X = xi) : k 3 k 3 k k

The value of k and its variance are



Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:

X: 2 3 4 5
P(X):
 

\[\frac{5}{k}\]
 

\[\frac{7}{k}\]
 

\[\frac{9}{k}\]


\[\frac{11}{k}\]


The value of k is .


Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is                

 

 


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.4 0.4 0.2

A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.


10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Determine the mean of the distribution.


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


Find the mean of number randomly selected from 1 to 15.


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×