हिंदी

Find the Probability Distribution of Y in Two Throws of Two Dice, Where Y Represents the Number of Times a Total of 9 Appears. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.

योग

उत्तर

It is given that Y denotes the number of times a total of 9 appears on throwing the pair of dice.

When the dice is thrown 2 times, the possibility of getting a total of 9 is possible only for the given combinations:

(3, 6) (4, 5) (5, 4) (6, 3)

So, the total number of outcomes is 36 and the total number of favourable outcomes is 4.

Probability of getting a total of 9 =

\[\frac{4}{36} = \frac{1}{9}\]

Probability of not getting a total of 9 =

\[1 - \frac{1}{9} = \frac{8}{9}\]
If Y takes the values 0, 1 and 2, then
\[P\left( Y = 0 \right) = \frac{8}{9} \times \frac{8}{9} = \frac{64}{81}\]
\[P\left( Y = 1 \right) = \frac{1}{9} \times \frac{8}{9} + \frac{8}{9} \times \frac{1}{9} = \frac{16}{81}\]
\[P\left( Y = 2 \right) = \frac{1}{9} \times \frac{1}{9} = \frac{1}{81}\]
Thus, the probability distribution of X is given by
Y P(Y)
0
 
\[\frac{64}{81}\]
1
 
\[\frac{16}{81}\]
2
 
\[\frac{1}{81}\]
  
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Mean and Variance of a Random Variable - Exercise 32.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 19 | पृष्ठ १५

संबंधित प्रश्न

A random variable X has the following probability distribution:

then E(X)=....................


Probability distribution of X is given by

X = x 1 2 3 4
P(X = x) 0.1 0.3 0.4 0.2

Find P(X ≥ 2) and obtain cumulative distribution function of X


Find the probability distribution of number of heads in two tosses of a coin.


Find the probability distribution of number of heads in four tosses of a coin.


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]

 


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Find the value of k.


Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.

 

Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following: 

Age x 0 1 2
lx 1000 880 876
T - - 3323

A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 


Three different aeroplanes are to be assigned to carry three cargo consignments with a view to maximize profit. The profit matrix (in lakhs of ₹) is as follows : 

Aeroplanes  Cargo consignments 
C1 C2 C3
A1 1 4 5
A2 2 3 3
A3 3 1 2

How should the cargo consignments be assigned to the aeroplanes to maximize the profit? 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year? 


Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2 3 4
P(x) 0.1 0.5 0.2 –0.1 0.3

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______


Find the mean and variance of the number randomly selected from 1 to 15


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


If the p.m.f of a r. v. X is

P(x) = `c/x^3`, for x = 1, 2, 3

        = 0, otherwise

then E(X) = ______.


Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.

  1. If X denotes the random variable “points earned” then what are the possible values X can take?
  2. Find the probability distribution of this random variable X.
  3. Find the expected value of the points she gets.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×