Advertisements
Advertisements
प्रश्न
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
Prove that E(Y2) = 2E(X).
उत्तर
First probability distribution is given by
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
We know that, E(X) = `sum_("i" = 11)^"n" "P"_"i""X"_"i"`
⇒ E(X) = `0 * 1/5 + 1 * 2/5 + 2 * 1/5 + 3 * 1/5`
= `0 + 2/5 + 2/5 + 3/5`
= `7/5`
For the second probability distribution,
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
E(Y2) = `0 * 1/5 + 1 * 3/10 + 4 * 2/5 + 9 * 1/10`
= `0 + 3/10 + 8/5 + 9/10`
= `28/10`
= `14/5`
Now E(Y2) = `14/5` and 2E(X) = `2*7/5 = 14/5`
Hence, E(Y2) = 2E(X).
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | -0.1 | 0.3 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Y | -1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
Find the probability distribution of number of heads in two tosses of a coin.
A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that
(i) all will bear ‘X’ mark.
(ii) not more than 2 will bear ‘Y’ mark.
(iii) at least one ball will bear ‘Y’ mark
(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.
Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)
X : | 3 | 2 | 1 | 0 | −1 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
X : | 0 | 1 | 2 |
P (X) : | 0.6 | 0.4 | 0.2 |
(iii)
X : | 0 | 1 | 2 | 3 | 4 |
P (X) : | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 |
(iv)
X : | 0 | 1 | 2 | 3 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 |
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.
Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine the value of k .
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -2 | -1 | 0 | 1 | 2 |
pi : | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
A random variable X has the following probability distribution:
X : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | 0.15 | 0.23 | 0.12 | 0.10 | 0.20 | 0.08 | 0.07 | 0.05 |
For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is
A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:
X: | 2 | 3 | 4 | 5 |
P(X): |
\[\frac{5}{k}\]
|
\[\frac{7}{k}\]
|
\[\frac{9}{k}\]
|
\[\frac{11}{k}\] |
The value of k is .
Find the probability distribution of the number of doublets in three throws of a pair of dice and find its mean.
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month.
The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-
(a) No defects
(b) At least one defect
[Use e-1 = 0.3678]
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
Find the probability of throwing at most 2 sixes in 6 throws of a single die.
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.
Solution: Here, n = 5, X =number of bombs that hit the target
p = probability that bomb will hit the target = `square`
∴ q = 1 - p = `square`
Here, `X∼B(5,4/5)`
∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`
P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]
= P(X = 3)
=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`
∴ P(X = 3) = `square`