Advertisements
Advertisements
प्रश्न
Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.
उत्तर
Let X denote the number of kings in a sample of 2 cards drawn from a well-shuffled pack of 52 playing cards. Then, X can take the values 0, 1 and 2.
Now,
\[P\left( X = 0 \right)\]
\[=P\left( \text{ no king }\right)\]
\[=\frac{{}^{48} C_2}{{}^{52} C_2}\]
\[=\frac{1128}{1326}\]
\[=\frac{188}{221}\]
\[P\left( X = 1 \right)\]
\[=P\left( 1 \text{ king } \right)\]
\[=\frac{{}^4 C_1 \times^{48} C_1}{{}^{52} C_2}\]
\[=\frac{192}{1326}\]
\[=\frac{32}{221}\]
\[P\left( X = 2 \right)\]
\[=P\left( 2 \text{ kings } \right)\]
\[=\frac{{}^4 C_2}{{}^{52} C_2}\]
\[=\frac{6}{1326}\]
\[=\frac{1}{221}\]Thus, the probability distribution of X is given by
x | P(X) |
0 |
\[\frac{188}{221}\]
|
1 |
\[\frac{32}{221}\]
|
2 |
\[\frac{1}{221}\]
|
Computation of mean and variance
xi | pi | pixi | pixi2 |
0 |
\[\frac{188}{221}\]
|
0 | 0 |
1 |
\[\frac{32}{221}\]
|
\[\frac{32}{221}\]
|
\[\frac{32}{221}\]
|
2 |
\[\frac{1}{221}\]
|
\[\frac{2}{221}\]
|
\[\frac{4}{221}\]
|
`∑`pixi = \[\frac{34}{221}\]
|
`∑`pixi2= \[\frac{36}{221}\] |
\[\text{ Mean} = \sum p_i x_i = \frac{34}{221}\]
\[\text{Variance} = \sum p_i {x_i}2^{}_{} - \left( \text{ Mean } \right)^2 \]
\[ = \frac{36}{221} - \left( \frac{34}{221} \right)^2 \]
\[ = \frac{7956 - 1156}{48841}\]
\[ = \frac{6800}{48841}\]
\[ = \frac{400}{2873}\]
संबंधित प्रश्न
Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?
Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:
1) Exactly two persons hit the target.
2) At least two persons hit the target.
3) None hit the target.
A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.
Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.
Find the mean and standard deviation of each of the following probability distribution :
xi : | 1 | 2 | 3 | 4 |
pi : | 0.4 | 0.3 | 0.2 | 0.1 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -3 | -1 | 0 | 1 | 3 |
pi : | 0.05 | 0.45 | 0.20 | 0.25 | 0.05 |
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
For what value of k the following distribution is a probability distribution?
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | 2k4 | 3k2 − 5k3 | 2k − 3k2 | 3k − 1 |
A random variable has the following probability distribution:
X = xi : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P (X = xi) : | 0 | 2 p | 2 p | 3 p | p2 | 2 p2 | 7 p2 | 2 p |
The value of p is
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
Write the negation of the following statements :
(a) Chetan has black hair and blue eyes.
(b) ∃ x ∈ R such that x2 + 3 > 0.
If X ∼ N (4,25), then find P(x ≤ 4)
The following table gives the age of the husbands and of the wives :
Age of wives (in years) |
Age of husbands (in years) |
|||
20-30 | 30- 40 | 40- 50 | 50- 60 | |
15-25 | 5 | 9 | 3 | - |
25-35 | - | 10 | 25 | 2 |
35-45 | - | 1 | 12 | 2 |
45-55 | - | - | 4 | 16 |
55-65 | - | - | - | 4 |
Find the marginal frequency distribution of the age of husbands.
From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results :
Age Group (in years) | Town I | Town II | ||
Population | No. of deaths | Population | No. of deaths | |
0-10 | 1500 | 45 | 6000 | 150 |
10-25 | 5000 | 30 | 6000 | 40 |
25 - 45 | 3000 | 15 | 5000 | 20 |
45 & above | 500 | 22 | 3000 | 54 |
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
A random variable X has the following probability distribution :
x = x | 0 | 1 | 2 | 3 | 7 | |||
P(X=x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine (i) k
(ii) P(X> 6)
(iii) P(0<X<3).
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Determine the value of k.
Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.
The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.
Solution: Here, n = 5, X =number of bombs that hit the target
p = probability that bomb will hit the target = `square`
∴ q = 1 - p = `square`
Here, `X∼B(5,4/5)`
∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`
P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]
= P(X = 3)
=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`
∴ P(X = 3) = `square`
Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.
- If X denotes the random variable “points earned” then what are the possible values X can take?
- Find the probability distribution of this random variable X.
- Find the expected value of the points she gets.