हिंदी

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel - Mathematics

Advertisements
Advertisements

प्रश्न

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?

योग

उत्तर

E1, E2 and A represent the following:

E1 = students living in hostels,

E2 = Students not residing in hostels

and A = students who get A-grades

Now P(E1) = `60/100 = 3/5`, P(E2) = `40/100 = 2/5`

P(A|E1) = `30/100 = 3/10`, P(A|E2) = `20/100 = 2/10`

By Bayes' theorem

P(E1|A) = `(P(A|E_1) P(E_1))/(P(A|E_1)P(E_1) + P(A|E_2)P(E_2))`

`= (3/10 xx 3/5)/((3/10 xx 3/5) + (2/10 xx 2/5))`

`= 9/ (9 + 4)`

`= 9/13`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.3 [पृष्ठ ५५६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.3 | Q 3 | पृष्ठ ५५६

संबंधित प्रश्न

A random variable X has the following probability distribution:

then E(X)=....................


The random variable X has probability distribution P(X) of the following form, where k is some number:

`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`

  1. Determine the value of 'k'.
  2. Find P(X < 2), P(X ≥ 2), P(X ≤ 2).

There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.


Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)

X : 3 2 1 0 −1
(X) : 0.3 0.2 0.4 0.1 0.05
 
(ii)
X : 0 1 2
P (X) : 0.6 0.4 0.2


(iii)

X : 0 1 2 3 4
P (X) : 0.1 0.5 0.2 0.1 0.1
 


(iv)

X : 0 1 2 3
P (X) : 0.3 0.2 0.4 0.1
 

A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine P(X ≤ 2) and P(X > 2) .


Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Find the value of k.


Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X


Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:

Xxi: -2 -1 0 1
P(Xxi) :
\[\frac{1 - a}{4}\]
 
\[\frac{1 + 2a}{4}\]
\[\frac{1 - 2a}{4}\]
\[\frac{1 + a}{4}\]

A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.     


Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following: 

Age x 0 1 2
lx 1000 880 876
T - - 3323

A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 


If X ∼ N (4,25), then find P(x ≤ 4)


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


Solve the following :

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1


Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


Solve the following problem :

The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a discrete random variable X is given below:

X 2 3 4 5
P(X) `5/"k"` `7/"k"` `9/"k"` `11/"k"`

The value of k is ______.


Box I contains 30 cards numbered 1 to 30 and Box II contains 20 cards numbered 31 to 50. A box is selected at random and a card is drawn from it. The number on the card is found to be a nonprime number. The probability that the card was drawn from Box I is ______.


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.

  1. If X denotes the random variable “points earned” then what are the possible values X can take?
  2. Find the probability distribution of this random variable X.
  3. Find the expected value of the points she gets.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×