हिंदी

The Random Variable X Has Probability Distribution P(X) of the Following Form, Where K Is Some Number: (i) Determine the Value Of K. - Mathematics

Advertisements
Advertisements

प्रश्न

The random variable X has probability distribution P(X) of the following form, where k is some number:

`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`

  1. Determine the value of 'k'.
  2. Find P(X < 2), P(X ≥ 2), P(X ≤ 2).

The random variable X has a probability distribution P(X) of the following form, where 'k' is some real number:

P(X) = `{(k","   if x = 0),(2k"," if x =1),(3k"," if x = 2),(0","        "otherwise"):}`

  1. Determine the value of k.
  2. Find P(X < 2).
  3. Find P(X > 2).
योग

उत्तर

(i) It is known that the sum of probabilities of a probability distribution of random variables is one.

∴ k + 2k + 3k + 0 = 1

⇒ 6k = 1

k = `1/6`

(ii) P(X < 2) = P(X = 0) + P(X = 1)

= k + 2k

= 3k

`= 3/6`

`= 1/2`

P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2)

= k + 2k + 3k

= 6k

= `6 xx 1/6`

= `6/6`

= 1

P(X ≥ 2) = P(X = 2) + P(X > 2)

= 3k + 0

= `3 xx 1/6`

= `3/6`

= `1/2`

(iii) P(X > 2) = 0.

shaalaa.com

Notes

Students should refer to the answer according to their questions.

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Probability - Exercise 13.4 [पृष्ठ ५७१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 13 Probability
Exercise 13.4 | Q 9. | पृष्ठ ५७१

संबंधित प्रश्न

From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -

(a) exactly 1 defective bulb.

(b) at least 1 defective bulb.


Find the probability distribution of number of tails in the simultaneous tosses of three coins.


A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)

X : 3 2 1 0 −1
(X) : 0.3 0.2 0.4 0.1 0.05
 
(ii)
X : 0 1 2
P (X) : 0.6 0.4 0.2


(iii)

X : 0 1 2 3 4
P (X) : 0.1 0.5 0.2 0.1 0.1
 


(iv)

X : 0 1 2 3
P (X) : 0.3 0.2 0.4 0.1
 

A bag contains 4 red and 6 black balls. Three balls are drawn at random. Find the probability distribution of the number of red balls.


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.


For what value of k the following distribution is a probability distribution?

X = xi : 0 1 2 3
P (X = xi) : 2k4 3k2 − 5k3 2k − 3k2 3k − 1

A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


Find mean and standard deviation of the continuous random variable X whose p.d.f. is given by f(x) = 6x(1 - x);= (0);      0 < x < 1(otherwise)


Compute the age specific death rate for the following data : 

Age group (years) Population (in thousands) Number of deaths
Below 5  15 360
5-30  20 400
Above 30  10 280

John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


A fair coin is tossed 12 times. Find the probability of getting  at least 2 heads .


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

z 3 2 1 0 -1
P(z) 0.3 0.2 0.4. 0.05 0.05

A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?


State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Find the probability that the inspector finds at most one defective item in the 4 selected items.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.


Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×