हिंदी

Discuss the Continuity of the Function F at X = 0, Where F(X) = 5 X + 5 − X − 2 Cos 2 X − Cos 6 X , for X ≠ 0 = 1 8 ( Log 5 ) 2 , for X = 0(4) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0

योग

उत्तर

`lim_(x → 0) f(x) = lim_(x → 0)[(5^x + 5^-x - 2)/(cos2x - cos6x)]`

= `lim_(x → 0)[(5^x + 1/5^x - 2)/(2sin4x . sin2x)]`

= `lim_(x → 0)[(5^(2x) + 1 - 2(5^x))/(5^x . 2.sin 4x .sin2x)]`

= `1/2lim_(x → 0)[(5^x - 1)^2/(5^x.sin4x.sin2x)]`

= `1/2lim_(x → 0)[((5^x - 1)/x)^2/(5^x((sin4x)/(4x)).4((sin2x)/(2x)).2)]`

= `1/16 . (lim_(x → 0)((5^x - 1)/x)^2)/(lim_(x → 0)(5^x).lim_(x → 0)((sin4x)/(4x)).lim_(x → 0)((sin2x)/(2x))`

= `1/16 . (log 5)^2/(5^0(1)(1))`

∴ `lim_(x → 0) f(x) = 1/16 (log 5)^2`

 = `1/16 xx 2 log 5`

 = `1/8 log 5`

Given `f(0) = 1/8 (log5)^2`

∴ `lim_(x → 0) f(x) ≠ f(0)`

∴ f is  discontinuous at x = 0. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


The value of b for which the function 

\[f\left( x \right) = \begin{cases}5x - 4 , & 0 < x \leq 1 \\ 4 x^2 + 3bx , & 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 

If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Examine the continuity of f(x)=`x^2-x+9  "for"  x<=3`

=`4x+3  "for"  x>3,  "at"  x=3` 


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1


If f is continuous on its domain D, then |f| is also continuous on D.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×