Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
उत्तर
`lim_(x → 0) f(x) = lim_(x → 0)[(5^x + 5^-x - 2)/(cos2x - cos6x)]`
= `lim_(x → 0)[(5^x + 1/5^x - 2)/(2sin4x . sin2x)]`
= `lim_(x → 0)[(5^(2x) + 1 - 2(5^x))/(5^x . 2.sin 4x .sin2x)]`
= `1/2lim_(x → 0)[(5^x - 1)^2/(5^x.sin4x.sin2x)]`
= `1/2lim_(x → 0)[((5^x - 1)/x)^2/(5^x((sin4x)/(4x)).4((sin2x)/(2x)).2)]`
= `1/16 . (lim_(x → 0)((5^x - 1)/x)^2)/(lim_(x → 0)(5^x).lim_(x → 0)((sin4x)/(4x)).lim_(x → 0)((sin2x)/(2x))`
= `1/16 . (log 5)^2/(5^0(1)(1))`
∴ `lim_(x → 0) f(x) = 1/16 (log 5)^2`
= `1/16 xx 2 log 5`
= `1/8 log 5`
Given `f(0) = 1/8 (log5)^2`
∴ `lim_(x → 0) f(x) ≠ f(0)`
∴ f is discontinuous at x = 0.
APPEARS IN
संबंधित प्रश्न
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
Discuss the continuity of the following functions at the indicated point(s):
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
For what value of k is the following function continuous at x = 2?
If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then
The value of b for which the function
If f (x) is differentiable at x = c, then write the value of
Examine the continuity of f(x)=`x^2-x+9 "for" x<=3`
=`4x+3 "for" x>3, "at" x=3`
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "if" x ≠ 2),("k"",", "if" x = 2):}` at x = 2
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
If f is continuous on its domain D, then |f| is also continuous on D.