हिंदी

Determine the values of a, b, c for which the function f(x) = forfor/for{sin(a+1)x+sinxxfor x<0xfor x=0x+bx2-xbx3/2for x>0 is continuous at x = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.

योग

उत्तर

Given:

f(x) is continuous at x = 0

For f(x) to be continuous at x = 0, f(0)- = f(0)+ = f(0)

LHL = f(0)- = `lim_(x->0) (sin (a + 1)x + sinx)/x`

`=> lim_(h->0)(sin (a + h)h + sinh)/h`

`=> lim_(h->0)(sin (a + 1)h)/h + lim_(h->0)sinh/h`

`=> lim_(h->0)(sin(a + 1)h)/h xx ((a + 1))/((a + 1)) + lim_(h->0)sinh/h`

`=> lim_(h->0)(sin (a + 1)h)/((a + 1)) xx ((a + 1))/1 + lim_(h->0)sinh/h`

`lim_(h->0)(sin(a + 1)h)/((a + 1)h) = 1`

`lim_(h->0)sinh/h = 1`

⇒ 1 × (a + 1) + 1

⇒ (a + 1) + 1

f(0)- ⇒ a + 2       ...(1)

RHL = f(0+) = `lim_(x->0)(sqrt(x + bx^2) - sqrtx)/(bx^(3/2))`

`=> lim_(x->0)(sqrt(x + bx^2)- sqrtx)/(bx^(3/2))`

`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(bh^(3/2))`

`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(b xx h xx h^(1/2))`

`=> lim_(h->0) (sqrt(h + bh^2)-sqrth)/(b xx h xx sqrth)`

`=> lim_(h ->0)(sqrt(h(1 + bh))- sqrth)/(b xx h xx sqrth)`

`=> lim_(h ->0)(sqrth(sqrt(1 + bh))- sqrt1)/(bh xx sqrth)`

`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh)`

Take the complex conjugate of 

`(sqrt(1 + bh)- sqrt 1)`,

i.e, `(sqrt(1 + bh)- sqrt 1)` and multiply it with numerator and denominator

`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh) xx ((sqrt(1 + bh)) + sqrt1)/((sqrt(1 + bh)) + sqrt1)`

`lim_(h->0) ((sqrt(1 + bh))^2 - (sqrt1)^2)/(bh)`

∴ (a + b)(a − b) = a2 − b2

`=> lim_(h->0)((1 + bh - 1))/(bh(sqrt(1 + bh))+ sqrt1)`

`=> lim_(h->0)((bh))/((sqrt(1 + bh)) sqrt1)`

`=> 1/((sqrt(1 + b xx 0)) + sqrt1)`

`=> 1/(1 + 1)`

f(0)+ = `1/2`   ...(2)

since, f(x) is continuous at x = 0, From (1) & (2), we get,

⇒ a + 2 = `1/2`

⇒ a = `1/2 - 2`

⇒ a = `(-3)/2`

Also, 

f(0)- = f(0)+ = f(0)

⇒ f(0) = c

⇒ c = a + 2 = `1/2`

⇒ c = `1/2`

So the values of a = `(-3)/2,` c = `1/2` and b = R-{0}(any real number except 0)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 26 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


If f is defined by f (x) = x2, find f'(2).


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


The set of points where the function f (x) = x |x| is differentiable is 

 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",",  "if"  x ≤ 2),(5 - x",",  "if"  x > 2):}` at x = 2


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


The composition of two continuous function is a continuous function.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×