Advertisements
Advertisements
प्रश्न
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
उत्तर
Given:
f(x) is continuous at x = 0
For f(x) to be continuous at x = 0, f(0)- = f(0)+ = f(0)
LHL = f(0)- = `lim_(x->0) (sin (a + 1)x + sinx)/x`
`=> lim_(h->0)(sin (a + h)h + sinh)/h`
`=> lim_(h->0)(sin (a + 1)h)/h + lim_(h->0)sinh/h`
`=> lim_(h->0)(sin(a + 1)h)/h xx ((a + 1))/((a + 1)) + lim_(h->0)sinh/h`
`=> lim_(h->0)(sin (a + 1)h)/((a + 1)) xx ((a + 1))/1 + lim_(h->0)sinh/h`
`lim_(h->0)(sin(a + 1)h)/((a + 1)h) = 1`
`lim_(h->0)sinh/h = 1`
⇒ 1 × (a + 1) + 1
⇒ (a + 1) + 1
f(0)- ⇒ a + 2 ...(1)
RHL = f(0+) = `lim_(x->0)(sqrt(x + bx^2) - sqrtx)/(bx^(3/2))`
`=> lim_(x->0)(sqrt(x + bx^2)- sqrtx)/(bx^(3/2))`
`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(bh^(3/2))`
`=> lim_(h->0)(sqrt(h + bh^2) - sqrth)/(b xx h xx h^(1/2))`
`=> lim_(h->0) (sqrt(h + bh^2)-sqrth)/(b xx h xx sqrth)`
`=> lim_(h ->0)(sqrt(h(1 + bh))- sqrth)/(b xx h xx sqrth)`
`=> lim_(h ->0)(sqrth(sqrt(1 + bh))- sqrt1)/(bh xx sqrth)`
`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh)`
Take the complex conjugate of
`(sqrt(1 + bh)- sqrt 1)`,
i.e, `(sqrt(1 + bh)- sqrt 1)` and multiply it with numerator and denominator
`=> lim_(h->0)((sqrt(1 + bh))- sqrt1)/(bh) xx ((sqrt(1 + bh)) + sqrt1)/((sqrt(1 + bh)) + sqrt1)`
`lim_(h->0) ((sqrt(1 + bh))^2 - (sqrt1)^2)/(bh)`
∴ (a + b)(a − b) = a2 − b2
`=> lim_(h->0)((1 + bh - 1))/(bh(sqrt(1 + bh))+ sqrt1)`
`=> lim_(h->0)((bh))/((sqrt(1 + bh)) sqrt1)`
`=> 1/((sqrt(1 + b xx 0)) + sqrt1)`
`=> 1/(1 + 1)`
f(0)+ = `1/2` ...(2)
since, f(x) is continuous at x = 0, From (1) & (2), we get,
⇒ a + 2 = `1/2`
⇒ a = `1/2 - 2`
⇒ a = `(-3)/2`
Also,
f(0)- = f(0)+ = f(0)
⇒ f(0) = c
⇒ c = a + 2 = `1/2`
⇒ c = `1/2`
So the values of a = `(-3)/2,` c = `1/2` and b = R-{0}(any real number except 0)
APPEARS IN
संबंधित प्रश्न
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]
Find whether f(x) is continuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if } x < \frac{\pi}{2} \\ a , & \text{ if } x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if } x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Find whether the function is differentiable at x = 1 and x = 2
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
The set of points where the function f (x) = x |x| is differentiable is
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3` for x = 1
If f is continuous at x = 0 then find f(0) where f(x) = `[5^x + 5^-x - 2]/x^2`, x ≠ 0
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
If the function f is continuous at x = 0 then find f(0),
where f(x) = `[ cos 3x - cos x ]/x^2`, `x!=0`
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
The composition of two continuous function is a continuous function.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.