हिंदी

If f ( x ) = { 1 − cos k x x sin x , x ≠ 0 1 2 , x = 0 is continuous at x = 0 , find k . - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]

योग

उत्तर

Given: 

\[f\left( x \right) = \binom{\frac{1 - \ coskx}{x\ sinx}, x \neq 0}{\frac{1}{2}, x = 0}\]

If

 \[f\left( x \right)\]  is continuous at x = 0, then

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

Consider:

\[\lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{1 - \cos kx}{x \sin x} \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{kx}{2}}{x \sin x} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{kx}{2}}{x^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{\frac{2 k^2}{4} \left( \sin \frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4} \lim_{x \to 0} \left( \frac{\left( sin\frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4}\left( \frac{\lim_{x \to 0} \frac{\left( \sin \frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2}}{\lim_{x \to 0} \frac{\sin x}{x}} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4} \times 1 = \frac{k^2}{2}\]

 From equation (1), we have

\[\frac{k^2}{2} = f\left( 0 \right)\]

\[\Rightarrow \frac{k^2}{2} = \frac{1}{2}\]
\[ \Rightarrow k = \pm 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.1 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.1 | Q 27 | पृष्ठ १९

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Let f (x) = | x | + | x − 1|, then


If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 


The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


If f is defined by f (x) = x2, find f'(2).


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


If f is continuous at x = 0, then find f (0). 

Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If y = ( sin x )x , Find `dy/dx`


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The function f(x) = |x| + |x – 1| is ______.


f(x) = `{{:(x^2/2",",  "if"  0 ≤ x ≤ 1),(2x^2 - 3x + 3/2",",  "if"  1 < x ≤ 2):}` at x = 1


f(x) = |x| + |x − 1| at x = 1


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×