English

If f ( x ) = { 1 − cos k x x sin x , x ≠ 0 1 2 , x = 0 is continuous at x = 0 , find k . - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]

Sum

Solution

Given: 

\[f\left( x \right) = \binom{\frac{1 - \ coskx}{x\ sinx}, x \neq 0}{\frac{1}{2}, x = 0}\]

If

 \[f\left( x \right)\]  is continuous at x = 0, then

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

Consider:

\[\lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{1 - \cos kx}{x \sin x} \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{kx}{2}}{x \sin x} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{2 \sin^2 \frac{kx}{2}}{x^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \lim_{x \to 0} \left( \frac{\frac{2 k^2}{4} \left( \sin \frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4} \lim_{x \to 0} \left( \frac{\left( sin\frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2 \left( \frac{\sin x}{x} \right)} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4}\left( \frac{\lim_{x \to 0} \frac{\left( \sin \frac{kx}{2} \right)^2}{\left( \frac{kx}{2} \right)^2}}{\lim_{x \to 0} \frac{\sin x}{x}} \right)\]
\[\Rightarrow \lim_{x \to 0} f\left( x \right) = \frac{2 k^2}{4} \times 1 = \frac{k^2}{2}\]

 From equation (1), we have

\[\frac{k^2}{2} = f\left( 0 \right)\]

\[\Rightarrow \frac{k^2}{2} = \frac{1}{2}\]
\[ \Rightarrow k = \pm 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.1 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.1 | Q 27 | Page 19

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


A function f(x) is defined as 

\[f\left( x \right) = \begin{cases}\frac{x^2 - 9}{x - 3}; if & x \neq 3 \\ 6 ; if & x = 3\end{cases}\]

Show that f(x) is continuous at x = 3

 

If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; 

\[f\left( x \right) = \begin{cases}kx + 1, \text{ if }  & x \leq \pi \\ \cos x, \text{ if }  & x > \pi\end{cases}\] at x = π

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\] 

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


Show that f(x) = x1/3 is not differentiable at x = 0.


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

If f is defined by f (x) = x2, find f'(2).


Discuss the continuity and differentiability of f (x) = e|x| .


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


A continuous function can have some points where limit does not exist.


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = |x| + |x − 1| at x = 1


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×