Advertisements
Advertisements
प्रश्न
Evaluate : `∫x cot^-1x` dx
योग
उत्तर
Let I = `∫x . cot^-1x` dx
I = `∫cot^-1x . x` dx
Using integration by parts ,
I = `cot^-1x ∫ x dx - ∫[d/dx(cot^-1 x)∫x dx]dx`
∴ `I = cot^-1x . x^2/2 - ∫(-1)/(1 + x^2) . x^2/2 dx`
∴ I = `cot^-1x . x^2/2 + 1/2∫x^2/(1 + x^2) dx`
∴ I = `cot^-1x . x^2/2 + 1/2∫((1 + x^2) - 1)/(1 + x^2)`dx
∴ I = `cot^-1x . x^2/2 + 1/2∫(1 - 1/(1 + x^2))dx`
∴ I = `cot^-1x . x^2/2 + 1/2(x - tan^-1x) + "C"`
∴ I = `x^2/2 . cot^-1x + x/2 - 1/2 tan^-1x + "C"`
shaalaa.com
Indefinite Integration - Definition of an Integral
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?