मराठी

An Urn Contains 4 Red and 3 Blue Balls. Find the Probability Distribution of the Number of Blue Balls in a Random Draw of 3 Balls with Replacement. - Mathematics

Advertisements
Advertisements

प्रश्न

An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.

बेरीज

उत्तर

Let X denote the number of blue balls in a sample of 3 balls drawn from a bag containing 4 red and 3 blue balls. Then, X can take values 0, 1, 2 and 3.
Now,

\[P\left( X = 0 \right) = P\left( \text{ no blue ball } \right) = \frac{4}{7} \times \frac{4}{7} \times \frac{4}{7} = \frac{64}{343}\]

\[P\left( X = 1 \right) = P\left( 1 \text{ blue ball }  \right) = \left( \frac{3}{7} \times \frac{4}{7} \times \frac{4}{7} \right) + \left( \frac{4}{7} \times \frac{3}{7} \times \frac{4}{7} \right) + \left( \frac{4}{7} \times \frac{4}{7} \times \frac{3}{7} \right) = \frac{144}{343}\]

\[P\left( X = 2 \right) = P\left( 2 \text{ blue balls } \right) = \left( \frac{3}{7} \times \frac{3}{7} \times \frac{4}{7} \right) + \left( \frac{4}{7} \times \frac{3}{7} \times \frac{3}{7} \right) + \left( \frac{3}{7} \times \frac{4}{7} \times \frac{3}{7} \right) = \frac{108}{343}\]

\[P\left( X = 3 \right) = P\left( 3 \text{ blue balls } \right) = \frac{3}{7} \times \frac{3}{7} \times \frac{3}{7} = \frac{27}{343}\]

Thus, the probability distribution of X is given by

X P(X)
0
 

\[\frac{64}{343}\]
1
 

\[\frac{144}{343}\]
2
 

\[\frac{108}{343}\]
3
 

\[\frac{27}{343}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Mean and Variance of a Random Variable - Exercise 32.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 22 | पृष्ठ १५

संबंधित प्रश्‍न

From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.


There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.


Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (X < 2) 


Find the probability distribution of the number of heads, when three coins are tossed. 


Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.                         


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A fair die is tossed. Let X denote twice the number appearing. Find the probability distribution, mean and variance of X.

 

Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .  


An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.      


If the probability distribution of a random variable X is as given below:

Write the value of P (X ≤ 2).

X = xi : 1 2 3 4
P (X = xi) : c 2c 4c 4c

 

 

Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:

X: 2 3 4 5
P(X):
 

\[\frac{5}{k}\]
 

\[\frac{7}{k}\]
 

\[\frac{9}{k}\]


\[\frac{11}{k}\]


The value of k is .


Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


Solve the following:

Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.

A highway safety group is interested in studying the speed (km/hrs) of a car at a check point.


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


A class has 15 students whose ages are 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 and 20 years. If X denotes the age of a randomly selected student, find the probability distribution of X. Find the mean and variance of X.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)


Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.


Kiran plays a game of throwing a fair die 3 times but to quit as and when she gets a six. Kiran gets +1 point for a six and –1 for any other number.

  1. If X denotes the random variable “points earned” then what are the possible values X can take?
  2. Find the probability distribution of this random variable X.
  3. Find the expected value of the points she gets.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×