मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is les - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.

बेरीज

उत्तर

Let X denote the number of burning lamps.
P(lamp will burn) = p = 0.3
∴ q = 1 – p = 1 – 0.3 = 0.7
Given, n = 3
∴ X ~ B(3, 0.3)
∴ The p.m.f. of X is given by
P(X = x) = `""^3"C"_x (0.3)^x (0.7)^(3 - x), x` = 0, 1, 2, 3
P(Classroom cannot be used)
= P(X < 2)
= P(X = 0 or X = 1)
= P(X = 0) + P(X = 1)
= `""^3"C"_0 (0.3)^0 (0.7)^3 + ""^3"C"_1 (0.3) (0.7)^2`
= (0.7)3 + 3 x (0.3) x (0.7)2
= 0.784

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part II [पृष्ठ १५६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part II | Q 1.05 | पृष्ठ १५६

संबंधित प्रश्‍न

Probability distribution of X is given by

X = x 1 2 3 4
P(X = x) 0.1 0.3 0.4 0.2

Find P(X ≥ 2) and obtain cumulative distribution function of X


State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 -0.1 0.3

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


The random variable X has probability distribution P(X) of the following form, where k is some number:

`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`

  1. Determine the value of 'k'.
  2. Find P(X < 2), P(X ≥ 2), P(X ≤ 2).

An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that

(i) all will bear ‘X’ mark.

(ii) not more than 2 will bear ‘Y’ mark.

(iii) at least one ball will bear ‘Y’ mark

(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?


Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X


A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is


An urn contains 3 white and 6 red balls. Four balls are drawn one by one with replacement from the urn. Find the probability distribution of the number of red balls drawn. Also find mean and variance of the distribution.


Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .


If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


The p.d.f. of a continuous r.v. X is given by

f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Solve the following problem :

It is observed that it rains on 10 days out of 30 days. Find the probability that it rains on at most 2 days of a week.


Find the mean and variance of the number randomly selected from 1 to 15


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Determine the mean of the distribution.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine P(X ≤ 2) and P(X > 2)


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×