Advertisements
Advertisements
प्रश्न
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.
उत्तर
Let X denote the number of bulbs that will fuse after 200 days.
P(bulb will fuse after 200 days) = p = 0.2
∴ q = 1 – p = 1 – 0.2 = 0.8
Given, n = 5
∴ X ∼ B(5, 0.2)
The p.m.f. of X is given by
P(X = x) = `""^5"C"_x (0.2)^x (0.8)^(5 - x), x` = 0, 1, ... ,5
(i) P(X = 0) = `""^5"C"_0 (0.2)^0 (0.8)^5` = (0.8)5
(ii) P(X ≤ 1) = P(X = 0 or X = 1)
= P(X = 0) + P(X = 1)
= `(0.8)^5 + ""^5"C"_1(0.2)(0.8)^4` ...[From (i)]
= (0.8)4 [0.8 + 5 x 0.2]
= (1.8) (0.8)4
(iii) P(X > 1) = 1 – p(X ≤ 1)
= 1 – (1.8) (0.8)4 ...[From (ii)]
(iv) P(X ≥ 1) = 1 – P(X < 1)
= 1 – P(X = 0)
= 1 – (0.8)5 ......[From (ii)]
APPEARS IN
संबंधित प्रश्न
Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?
Find the probability distribution of number of heads in two tosses of a coin.
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
Find the probability distribution of number of heads in four tosses of a coin.
A random variable X has the following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(X) | 0 | k | 2k | 2k | 3k | k2 |
2k2 |
7k2 + k |
Determine
(i) k
(ii) P (X < 3)
(iii) P (X > 6)
(iv) P (0 < X < 3)
If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
A random variable X has the following probability distribution:
Values of X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?
An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.
A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution :
xi : | -2 | -1 | 0 | 1 | 2 |
pi : | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Find the value of k.
Find the mean variance and standard deviation of the following probability distribution
xi : | a | b |
pi : | p | q |
A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.
A fair die is tossed. Let X denote 1 or 3 according as an odd or an even number appears. Find the probability distribution, mean and variance of X.
A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.
An urn contains 5 red and 2 black balls. Two balls are randomly drawn, without replacement. Let X represent the number of black balls drawn. What are the possible values of X ? Is X a random variable ? If yes, then find the mean and variance of X.
A random variable X takes the values 0, 1, 2, 3 and its mean is 1.3. If P (X = 3) = 2 P (X = 1) and P (X = 2) = 0.3, then P (X = 0) is
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution.
If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3.
A random variable X has the following probability distribution :
X = x | -2 | -1 | 0 | 1 | 2 | 3 |
P(x) | 0.1 | k | 0.2 | 2k | 0.3 | k |
Find the value of k and calculate mean.
If random variable X has probability distribution function.
f(x) = `c/x`, 1 < x < 3, c > 0, find c, E(x) and Var(X)
If X ∼ N (4,25), then find P(x ≤ 4)
Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X :
X | -1 | 0 | 1 |
P(X = x) | -0.2 | 1 | 0.2 |
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X > 1
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.
Solve the following problem :
The probability that a bomb will hit the target is 0.8. Find the probability that, out of 5 bombs, exactly 2 will miss the target.
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.
Find the probability that the visitor obtains the answer yes from at least 3 students.
Find the probability distribution of the number of doublets in three throws of a pair of dice
Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
Prove that E(Y2) = 2E(X).
The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate the value of k
The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
where k is a constant. Calculate E(3X2)
Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.
If the p.m.f of a r. v. X is
P(x) = `c/x^3`, for x = 1, 2, 3
= 0, otherwise
then E(X) = ______.
A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.