मराठी

A Fair Die is Tossed Twice. If the Number Appearing on the Top is Less than 3, It is a Success. Find the Probability Distribution of Number of Successes. - Mathematics

Advertisements
Advertisements

प्रश्न

A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.

बेरीज

उत्तर

Let X denote the event of getting a number less than 3 (1 or 2) on throwing the die. Then, X can take the values 0, 1 and 2.
Now,

\[P\left( X = 0 \right) = \frac{16}{36} = \frac{4}{9}\]
\[P\left( X = 1 \right) = \frac{16}{36} = \frac{4}{9} \]
\[P\left( X = 2 \right) = \frac{4}{36} = \frac{1}{9}\]

Thus, the probability distribution of X is given by

X P(X)
0
 

\[\frac{4}{9}\]
1
 

\[\frac{4}{9}\]
2
 

\[\frac{1}{9}\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Mean and Variance of a Random Variable - Exercise 32.1 [पृष्ठ १५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 32 Mean and Variance of a Random Variable
Exercise 32.1 | Q 24 | पृष्ठ १५

संबंधित प्रश्‍न

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.


There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.


Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.


The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1

where c > 0  Find: P (1 < X ≤ 2)


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine P(X ≤ 2) and P(X > 2) .


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

Two cards are drawn simultaneously from a pack of 52 cards. Compute the mean and standard deviation of the number of kings.


A fair coin is tossed four times. Let X denote the longest string of heads occurring. Find the probability distribution, mean and variance of X.


A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Let X be a random variable which assumes values  x1 , x2, x3 , x4 such that  2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3. 


Verify the following function, which can be regarded as p.m.f. for the given values of X : 

X = x -1 0 1
P(x) -0.2 1 0.2

The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.


A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6
P(X) C 2C 2C 3C C2 2C2 7C2+C

Find the value of C and also calculate the mean of this distribution.


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2 3 4
P(x) 0.1 0.5 0.2 –0.1 0.3

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Solve the following problem :

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is positive.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is non-negative


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.


Find the mean and variance of the number randomly selected from 1 to 15


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Variance of X.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Find the probability distribution of the number of successes in two toves of a die where a success is define as:- Six appeared on at least one die.


A random variable x has to following probability distribution.

X 0 1 2 3 4 5 6 7
P(x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine


Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×