मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve the following problem : In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics. Calculate the probabilit - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Calculate the probabilities of obtaining an answer yes from all of the selected students.

बेरीज

उत्तर

Let X denote the number of pupils who like mathematics.

P(pupils like mathematics) = p = `(8)/(100) = (4)/(5)`   ...[Given]

q = 1 – p = `1 - (4)/(5) = (1)/(5)`

Given, n = 4

∴ X ~ B`(4, 4/5)`
The p.m.f. of X is given by

P(X = x) = `""^4"C"x 4/5^x  (1/5)^(4 - x), x` = 0, 1, ...,4

P(obtaining an answer yes form all of the selected students)
= P(X = 4)

= `""^4"C"_4 (4/5)^4 (1/5)^0`

= `(4^4)/(5^4)`

= `(256)/(5^4)`..

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Probability Distributions - Part II [पृष्ठ १५७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Probability Distributions
Part II | Q 1.11 | पृष्ठ १५७

संबंधित प्रश्‍न

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Y -1 0 1
P(Y) 0.6 0.1 0.2

State the following are not the probability distributions of a random variable. Give reasons for your answer.

Z 3 2 1 0 -1
P(Z) 0.3 0.2 0.4 0.1 0.05

Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.


Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distributions:

xi : 2 3 4
pi : 0.2 0.5 0.3

 


Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Determine the mean of the distribution.                


If X denotes the number on the upper face of a cubical die when it is thrown, find the mean of X.


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


Mark the correct alternative in the following question:
Let X be a discrete random variable. Then the variance of X is                

 

 


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


From the following data, find the crude death rates (C.D.R.) for Town I and Town II, and comment on the results : 

Age Group (in years) Town I Town II
Population  No. of deaths Population  No. of deaths
0-10  1500 45 6000 150
10-25  5000 30 6000 40
25 - 45  3000 15 5000 20
45 & above  500 22 3000 54

A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -

(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.1 0.6 0.3

The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X = 0


Find the probability of throwing at most 2 sixes in 6 throws of a single die.


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

If a fair coin is tossed 4 times, find the probability that it shows 3 heads


Find the probability distribution of the number of doublets in three throws of a pair of dice


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×