मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

A Departmental Store Gives Trafnfng to the Salesmen in Service Followed by a Test. It is Experienced that the Performance Regarding Sales of Any Salesman is Linearly Related to the Score - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period. 

Test scores (X)  16 22 28 24 29 25 16 23 24
Sales (Y) (₹ in hundreds) 35 42 57 40 54 51 34 47 45

(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17. 

बेरीज

उत्तर

X = xi Y = yi `x_i - barx` `y_i - bary` `(x - barx)^2` `(x_i - barx)(y_i - bary)`
16 35 -7 -10 49 70
22 42 -1 -3 1 3
28 57 5 12 25 60
24 40 1 -5 1 -5
29 54 6 9 36 54
25 51 2 6 4 12
16 34 -7 -11 49 77
23 47 0 2 0 0
24 45 1 0 1 0
207 405 0 0 166 271

`therefore n = 9 , Σx_i = 207 , Σy_i = 405`

`barx = (Σx_i)/n = 207/9 = 23 , bary = (Σy_i)/n = 405/9 = 45`

(a) Line of regression Y on X is 

`y - bary = b_(yx)(x - barx)`  .....(i)

Where , `b_(yx) = (Σ(x_i - barx)(y_i - bary))/(Σ(x_i - barx)^2 )`

= `271/166`

= 1.6325

From (i) equation of regression line Y on X is

(y - 45) = 1.6325 (x - 23)

y - 45 = -1.6325(23) + 1.6325x

y = 74525 + 1.6325x

(b) Estimate of Y when X = 17 is 

y = 7.4525 + ( 1.6325) (17) 

  = 7.4525 + 27.7525 

  = 35.205 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March)

APPEARS IN

संबंधित प्रश्‍न

From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -

(a) exactly 1 defective bulb.

(b) at least 1 defective bulb.


State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.


Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.                                                                                                                                                                                 


Find the probability distribution of the number of white balls drawn in a random draw of 3 balls without replacement, from a bag containing 4 white and 6 red balls


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


Find the mean and standard deviation of each of the following probability distribution :

xi: 0 1 3 5
pi :  0.2 0.5 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  0 1 2 3 4 5
pi : 
\[\frac{1}{6}\]
\[\frac{5}{18}\]
\[\frac{2}{9}\]
\[\frac{1}{6}\]
\[\frac{1}{9}\]
\[\frac{1}{18}\]

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.

 

Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution. 


Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

A coin is biased so that the head is 3 times as likely to occur as tail. Find the probability distribution of number of tails in two tosses.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


Solve the following problem:

Following is the probability distribution of a r.v.X.

X – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is odd.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is even.


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Find the probability that the visitor obtains the answer yes from at least 3 students.


A random variable X has the following probability distribution

X 2 3 4
P(x) 0.3 0.4 0.3

Then the variance of this distribution is


For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


A random variable X has the following probability distribution:

x 1 2 3 4 5 6 7
P(x) k 2k 2k 3k k2 2k2 7k2 + k

Find:

  1. k
  2. P(X < 3)
  3. P(X > 4)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×