Advertisements
Advertisements
प्रश्न
A random variable X has the following probability distribution
X | 2 | 3 | 4 |
P(x) | 0.3 | 0.4 | 0.3 |
Then the variance of this distribution is
पर्याय
0.6
0.7
0.77
0.66
उत्तर
0.6
संबंधित प्रश्न
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.5 | 0.2 | -0.1 | 0.3 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Z | 3 | 2 | 1 | 0 | -1 |
P(Z) | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?
Find the probability distribution of number of heads in two tosses of a coin.
Find the probability distribution of number of tails in the simultaneous tosses of three coins.
Find the probability distribution of number of heads in four tosses of a coin.
A coin is biased so that the head is 3 times as likely to occur as tail. If the coin is tossed twice, find the probability distribution of number of tails.
The random variable X has probability distribution P(X) of the following form, where k is some number:
`P(X = x) {(k, if x = 0),(2k, if x = 1),(3k, if x = 2),(0, "otherwise"):}`
- Determine the value of 'k'.
- Find P(X < 2), P(X ≥ 2), P(X ≤ 2).
If the probability that a fluorescent light has a useful life of at least 800 hours is 0.9, find the probabilities that among 20 such lights at least 2 will not have a useful life of at least 800 hours. [Given : (0⋅9)19 = 0⋅1348]
There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Find the probability distribution of the number of doublets in four throws of a pair of dice. Also find the mean and variance of this distribution.
Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)
X : | 3 | 2 | 1 | 0 | −1 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
X : | 0 | 1 | 2 |
P (X) : | 0.6 | 0.4 | 0.2 |
(iii)
X : | 0 | 1 | 2 | 3 | 4 |
P (X) : | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 |
(iv)
X : | 0 | 1 | 2 | 3 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 |
A random variable X has the following probability distribution:
Values of X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (X < 2)
The probability distribution function of a random variable X is given by
xi : | 0 | 1 | 2 |
pi : | 3c3 | 4c − 10c2 | 5c-1 |
where c > 0 Find: P (1 < X ≤ 2)
Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Find the probability distribution of the number of heads, when three coins are tossed.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
Three cards are drawn successively with replacement from a well-shuffled deck of 52 cards. A random variable X denotes the number of hearts in the three cards drawn. Determine the probability distribution of X.
Find the mean and standard deviation of each of the following probability distribution :
xi : | -5 | -4 | 1 | 2 |
pi : | \[\frac{1}{4}\] | \[\frac{1}{8}\] | \[\frac{1}{2}\] | \[\frac{1}{8}\] |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -3 | -1 | 0 | 1 | 3 |
pi : | 0.05 | 0.45 | 0.20 | 0.25 | 0.05 |
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
A fair coin is tossed four times. Let X denote the number of heads occurring. Find the probability distribution, mean and variance of X.
Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.
In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).
Three cards are drawn at random (without replacement) from a well shuffled pack of 52 cards. Find the probability distribution of number of red cards. Hence, find the mean of the distribution .
If the probability distribution of a random variable X is as given below:
Write the value of P (X ≤ 2).
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | c | 2c | 4c | 4c |
A random variable has the following probability distribution:
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | k | 2k | 3k | 4k |
Write the value of P (X ≥ 3).
If a random variable X has the following probability distribution:
X : | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | a | 3a | 5a | 7a | 9a | 11a | 13a | 15a | 17a |
then the value of a is
A random variable X has the following probability distribution:
X : | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
P (X) : | 0.15 | 0.23 | 0.12 | 0.10 | 0.20 | 0.08 | 0.07 | 0.05 |
For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is
Mark the correct alternative in the following question:
The probability distribution of a discrete random variable X is given below:
X: | 2 | 3 | 4 | 5 |
P(X): |
\[\frac{5}{k}\]
|
\[\frac{7}{k}\]
|
\[\frac{9}{k}\]
|
\[\frac{11}{k}\] |
The value of k is .
Mark the correct alternative in the following question:
For the following probability distribution:
X : | 1 | 2 | 3 | 4 |
P(X) : |
\[\frac{1}{10}\]
|
\[\frac{1}{5}\]
|
\[\frac{3}{10}\]
|
\[\frac{2}{5}\]
|
The value of E(X2) is
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
From a lot of 15 bulbs which include 5 defective, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence, find the mean of the distribution.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.
For the following probability density function (p. d. f) of X, find P(X < 1) and P(|x| < 1)
`f(x) = x^2/18, -3 < x < 3`
= 0, otherwise
Let X be a random variable which assumes values x1 , x2, x3 , x4 such that 2P (X = x1) = 3P (X = x2) = P (X = x3) = 5P (X = x4). Find the probability distribution of X.
Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).
Calculate `"e"_0^circ ,"e"_1^circ , "e"_2^circ` from the following:
Age x | 0 | 1 | 2 |
lx | 1000 | 880 | 876 |
Tx | - | - | 3323 |
Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them?
A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period.
Test scores (X) | 16 | 22 | 28 | 24 | 29 | 25 | 16 | 23 | 24 |
Sales (Y) (₹ in hundreds) | 35 | 42 | 57 | 40 | 54 | 51 | 34 | 47 | 45 |
(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5
= 0 , otherwise.
Find E(X).
A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -
(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
The p.d.f. of a continuous r.v. X is given by
f (x) = `1/ (2a)` , for 0 < x < 2a and = 0, otherwise. Show that `P [X < a/ 2] = P [X >( 3a)/ 2]` .
Determine whether each of the following is a probability distribution. Give reasons for your answer.
z | 3 | 2 | 1 | 0 | -1 |
P(z) | 0.3 | 0.2 | 0.4. | 0.05 | 0.05 |
Determine whether each of the following is a probability distribution. Give reasons for your answer.
y | –1 | 0 | 1 |
P(y) | 0.6 | 0.1 | 0.2 |
A sample of 4 bulbs is drawn at random with replacement from a lot of 30 bulbs which includes 6 defective bulbs. Find the probability distribution of the number of defective bulbs.
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes
10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?
In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?
Defects on plywood sheet occur at random with the average of one defect per 50 Sq.ft. Find the probability that such a sheet has no defect
Solve the following problem:
Following is the probability distribution of a r.v.X.
X | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is odd.
Solve the following problem :
If a fair coin is tossed 4 times, find the probability that it shows head in the first 2 tosses and tail in last 2 tosses.
Solve the following problem :
The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0
Let the p.m.f. of a random variable X be P(x) = `(3 - x)/10`, for x = −1, 0, 1, 2 = 0, otherwise Then E(x) is ______
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Determine the mean of the distribution.
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Determine P(X ≤ 2) and P(X > 2)
Two probability distributions of the discrete random variable X and Y are given below.
X | 0 | 1 | 2 | 3 |
P(X) | `1/5` | `2/5` | `1/5` | `1/5` |
Y | 0 | 1 | 2 | 3 |
P(Y) | `1/5` | `3/10` | `2/10` | `1/10` |
Prove that E(Y2) = 2E(X).
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate the value of k
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate E(X)
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate Standard deviation of X.
The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)
The probability distribution of a discrete random variable X is given below:
X | 2 | 3 | 4 | 5 |
P(X) | `5/"k"` | `7/"k"` | `9/"k"` | `11/"k"` |
The value of k is ______.
A bag contains 1 red and 3 white balls. Find the probability distribution of the number of red balls if 2 balls are drawn at random from the bag one-by-one without replacement.
A random variable x has to following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine
A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.
Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.
The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.
Solution: Here, n = 5, X =number of bombs that hit the target
p = probability that bomb will hit the target = `square`
∴ q = 1 - p = `square`
Here, `X∼B(5,4/5)`
∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`
P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]
= P(X = 3)
=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`
∴ P(X = 3) = `square`
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.