मराठी

Mark the Correct Alternative in the Following Question: for the Following Probability Distribution: X: 1 2 3 4 P(X): 1 10 1 5 3 10 2 5 the Value of E(X2) is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in the following question:

For the following probability distribution:
 

X : 1 2 3 4
P(X) :
 

\[\frac{1}{10}\]
 

\[\frac{1}{5}\]
 

\[\frac{3}{10}\]
 

\[\frac{2}{5}\]


The value of E(X2) is

पर्याय

  • 3     

  •  5   

  •  7   

  •  10

MCQ
बेरीज

उत्तर

The probability distribution of X is given below:

X : 1 2 3 4
P(X) :
 

\[\frac{1}{10}\]
 

\[\frac{1}{5}\]
 

\[\frac{3}{10}\]
 

\[\frac{2}{5}\]

\[E\left( X^2 \right) = 1^2 \times \frac{1}{10} + 2^2 \times \frac{1}{5} + 3^2 \times \frac{3}{10} + 4^2 \times \frac{2}{5}\]
\[ = \frac{1}{10} + \frac{8}{10} + \frac{27}{10} + \frac{64}{10}\]
\[ = \frac{100}{10}\]
\[ = 10\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 32: Mean and Variance of a Random Variable - MCQ [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 32 Mean and Variance of a Random Variable
MCQ | Q 8 | पृष्ठ ४७

संबंधित प्रश्‍न

An urn contains 5 red and 2 black balls. Two balls are randomly drawn. Let X represents the number of black balls. What are the possible values of X? Is X a random variable?


A random variable X has the following probability distribution.

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2

2k2

7k2 + k

Determine

(i) k

(ii) P (X < 3)

(iii) P (X > 6)

(iv) P (0 < X < 3)


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


An urn contains 25 balls of which 10 balls bear a mark ‘X’ and the remaining 15 bear a mark ‘Y’. A ball is drawn at random from the urn, its mark is noted down and it is replaced. If 6 balls are drawn in this way, find the probability that

(i) all will bear ‘X’ mark.

(ii) not more than 2 will bear ‘Y’ mark.

(iii) at least one ball will bear ‘Y’ mark

(iv) the number of balls with ‘X’ mark and ‘Y’ mark will be equal.


A random variable X takes the values 0, 1, 2 and 3 such that: 

P (X = 0) = P (X > 0) = P (X < 0); P (X = −3) = P (X = −2) = P (X = −1); P (X = 1) = P (X = 2) = P (X = 3) .  Obtain the probability distribution of X


Five defective mangoes are accidently mixed with 15 good ones. Four mangoes are drawn at random from this lot. Find the probability distribution of the number of defective mangoes.


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.


Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red balls drawn, then find the probability distribution of X.                         


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine the value of k .


Find the mean and standard deviation of each of the following probability distribution :

xi : -5 -4 1 2
pi : \[\frac{1}{4}\] \[\frac{1}{8}\] \[\frac{1}{2}\] \[\frac{1}{8}\]
 

Two cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2, and 3. Let X denote the sum and Y the maximum of the two numbers drawn. Find the probability distribution, mean and variance of X and Y.


In roulette, Figure, the wheel has 13 numbers 0, 1, 2, ...., 12 marked on equally spaced slots. A player sets Rs 10 on a given number. He receives Rs 100 from the organiser of the game if the ball comes to rest in this slot; otherwise he gets nothing. If X denotes the player's net gain/loss, find E (X).


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X


Find the mean of the following probability distribution:

Xxi: 1 2 3
P(Xxi) :
\[\frac{1}{4}\]
 
\[\frac{1}{8}\]
\[\frac{5}{8}\]

 


Mark the correct alternative in the following question:
For the following probability distribution:

X: −4 −3 −2 −1 0
P(X): 0.1 0.2 0.3 0.2 0.2

The value of E(X) is

 

 


A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.


The expenditure Ec of a person with income I is given by E= (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6
P(X) C 2C 2C 3C C2 2C2 7C2+C

Find the value of C and also calculate the mean of this distribution.


Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


Determine whether each of the following is a probability distribution. Give reasons for your answer.

y –1 0 1
P(y) 0.6 0.1 0.2

Determine whether each of the following is a probability distribution. Give reasons for your answer.

x 0 1 2
P(x) 0.3 0.4 0.2

The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:

  1. no defect
  2. at least one defect
    Use e−1 = 0.3678

State whether the following is True or False :

If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.


Solve the following problem :

Following is the probability distribution of a r.v.X.

x – 3 – 2 –1 0 1 2 3
P(X = x) 0.05 0.1 0.15 0.20 0.25 0.15 0.1

Find the probability that X is non-negative


Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as number greater than 4.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Find the probability that the visitor obtains the answer yes from at least 3 students.


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


Two biased dice are thrown together. For the first die P(6) = `1/2`, the other scores being equally likely while for the second die, P(1) = `2/5` and the other scores are equally likely. Find the probability distribution of ‘the number of ones seen’.


The random variable X can take only the values 0, 1, 2. Given that P(X = 0) = P(X = 1) = p and that E(X2) = E[X], find the value of p


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


Find the mean of number randomly selected from 1 to 15.


Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×