Advertisements
Advertisements
प्रश्न
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine the value of k .
उत्तर
We have,
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
\[ \text{ As } , \sum p_i = 1\]
\[ \Rightarrow k + \frac{k}{2} + \frac{k}{4} + \frac{k}{8} = 1\]
\[ \Rightarrow \frac{8k + 4k + 2k + k}{8} = 1\]
\[ \Rightarrow \frac{15k}{8} = 1\]
\[ \therefore k = \frac{8}{15}\]
APPEARS IN
संबंधित प्रश्न
Two dice are thrown simultaneously. If X denotes the number of sixes, find the expectation of X.
Two numbers are selected at random (without replacement) from the first six positive integers. Let X denotes the larger of the two numbers obtained. Find E(X).
Two numbers are selected at random (without replacement) from the first five positive integers. Let X denote the larger of the two numbers obtained. Find the mean and variance of X
Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:
1) Exactly two persons hit the target.
2) At least two persons hit the target.
3) None hit the target.
There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)
X : | 3 | 2 | 1 | 0 | −1 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 | 0.05 |
X : | 0 | 1 | 2 |
P (X) : | 0.6 | 0.4 | 0.2 |
(iii)
X : | 0 | 1 | 2 | 3 | 4 |
P (X) : | 0.1 | 0.5 | 0.2 | 0.1 | 0.1 |
(iv)
X : | 0 | 1 | 2 | 3 |
P (X) : | 0.3 | 0.2 | 0.4 | 0.1 |
Let X be a random variable which assumes values x1, x2, x3, x4 such that 2P (X = x1) = 3P(X = x2) = P (X = x3) = 5 P (X = x4). Find the probability distribution of X.
Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Find the mean and standard deviation of each of the following probability distributions:
xi : | 2 | 3 | 4 |
pi : | 0.2 | 0.5 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | -5 | -4 | 1 | 2 |
pi : | \[\frac{1}{4}\] | \[\frac{1}{8}\] | \[\frac{1}{2}\] | \[\frac{1}{8}\] |
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | 1 | 2 | 3 | 4 |
pi : | 0.4 | 0.3 | 0.2 | 0.1 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | 0 | 1 | 2 | 3 | 4 | 5 |
pi : |
\[\frac{1}{6}\]
|
\[\frac{5}{18}\]
|
\[\frac{2}{9}\]
|
\[\frac{1}{6}\]
|
\[\frac{1}{9}\]
|
\[\frac{1}{18}\]
|
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:
X= xi: | -2 | -1 | 0 | 1 |
P(X= xi) : |
\[\frac{1 - a}{4}\]
|
\[\frac{1 + 2a}{4}\]
|
\[\frac{1 - 2a}{4}\]
|
\[\frac{1 + a}{4}\]
|
Mark the correct alternative in the following question:
For the following probability distribution:
X: | −4 | −3 | −2 | −1 | 0 |
P(X): | 0.1 | 0.2 | 0.3 | 0.2 | 0.2 |
The value of E(X) is
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .
The expenditure Ec of a person with income I is given by Ec = (0.000035) I2 + (0. 045) I. Find marginal propensity to consume (MPC) and average propensity to consume (APC) when I = 5000.
Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured.
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
Solve the following :
Identify the random variable as either discrete or continuous in each of the following. Write down the range of it.
20 white rats are available for an experiment. Twelve rats are male. Scientist randomly selects 5 rats number of female rats selected on a specific day
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.
A random variable X has the following probability distribution
X | 2 | 3 | 4 |
P(x) | 0.3 | 0.4 | 0.3 |
Then the variance of this distribution is
For the random variable X, if V(X) = 4, E(X) = 3, then E(x2) is ______
The probability distribution of a random variable X is given below:
X | 0 | 1 | 2 | 3 |
P(X) | k | `"k"/2` | `"k"/4` | `"k"/8` |
Find P(X ≤ 2) + P (X > 2)
The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2, "for" x = 1"," 2"," 3),(2"k"x, "for" x = 4"," 5"," 6),(0, "otherwise"):}`
where k is a constant. Calculate E(X)
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.