मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Find the mean of number randomly selected from 1 to 15. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the mean of number randomly selected from 1 to 15.

बेरीज

उत्तर

The sample space of the experiment is S = {1, 2, 3, …, 15}.

Let X denotes the number selected.

Then X is a random variable that can take values 1, 2, 3, …, 15.

Each number selected is equiprobable therefore

P(1) = P(2) = P(3) = … = P(15) = `1/15`

μ = E(X) = `sum_(i = 1)^n x_ip_i`

= `1 xx 1/15 + 2 xx 1/15 + 3 xx 1/15 + ... + 15 xx 1/15`

= `(1 + 2 + 3 + ... + 15) xx 1/15`

= `((15 xx 16)/2) xx 1/15`

= 8

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2022-2023 (March) Official

संबंधित प्रश्‍न

From a lot of 25 bulbs of which 5 are defective a sample of 5 bulbs was drawn at random with replacement. Find the probability that the sample will contain -

(a) exactly 1 defective bulb.

(b) at least 1 defective bulb.


State the following are not the probability distributions of a random variable. Give reasons for your answer.

X 0 1 2
P (X) 0.4 0.4 0.2

Find the probability distribution of number of tails in the simultaneous tosses of three coins.


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as

(i) number greater than 4

(ii) six appears on at least one die


Suppose that two cards are drawn at random from a deck of cards. Let X be the number of aces obtained. Then the value of E(X) is

(A) `37/221`

(B) 5/13

(C) 1/13

(D) 2/13


Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?


A random variable X ~ N (0, 1). Find P(X > 0) and P(X < 0).


There are 4 cards numbered 1, 3, 5 and 7, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean 'and variance of X.


There are 4 cards numbered 1 to 4, one number on one card. Two cards are drawn at random without replacement. Let X denote the sum of the numbers on the two drawn cards. Find the mean and variance of X.


Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.


Which of the following distributions of probabilities of a random variable X are the probability distributions?
(i)

X : 3 2 1 0 −1
(X) : 0.3 0.2 0.4 0.1 0.05
 
(ii)
X : 0 1 2
P (X) : 0.6 0.4 0.2


(iii)

X : 0 1 2 3 4
P (X) : 0.1 0.5 0.2 0.1 0.1
 


(iv)

X : 0 1 2 3
P (X) : 0.3 0.2 0.4 0.1
 

The probability distribution function of a random variable X is given by

xi : 0 1 2
pi : 3c3 4c − 10c2 5c-1
 

where c > 0 Find:  c 


Two cards are drawn from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.


Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?


A class has 15 students whose ages are 14, 17, 15, 14, 21, 19, 20, 16, 18, 17, 20, 17, 16, 19 and 20 years respectively. One student is selected in such a manner that each has the same chance of being selected and the age X of the selected student is recorded. What is the probability distribution of the random variable X?


Five defective bolts are accidently mixed with twenty good ones. If four bolts are drawn at random from this lot, find the probability distribution of the number of defective bolts.


Two cards are drawn successively with replacement from well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Two cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of kings.


Two cards are drawn successively without replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of aces.


Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.


An urn contains 4 red and 3 blue balls. Find the probability distribution of the number of blue balls in a random draw of 3 balls with replacement.


Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success. 


A fair die is tossed twice. If the number appearing on the top is less than 3, it is a success. Find the probability distribution of number of successes.


Let X represent the difference between the number of heads and the number of tails when a coin is tossed 6 times. What are the possible values of X?


The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

Determine P(X ≤ 2) and P(X > 2) .


Let, X denote the number of colleges where you will apply after your results and P(X = x) denotes your probability of getting admission in number of colleges. It is given that

\[P\left( X = x \right) = \begin{cases}k\text{ x }  & , & \text{ if } x = 0 \text{ or }  1 \\ 2 \text{ kx }  & , & \text{ if }  x = 2 \\ k\left( 5 - x \right) & , & \text{ if } x = 3 \text{ or } 4 \\ 0 & , & \text{ if } x > 4\end{cases}\]

where k is a positive constant. Find the value of k. Also find the probability that you will get admission in (i) exactly one college (ii) at most 2 colleges (iii) at least 2 colleges.


Find the mean and standard deviation of each of the following probability distribution:

xi :  1 3 4 5
pi:  0.4 0.1 0.2 0.3

 


Find the mean and standard deviation of each of the following probability distribution:

xi : −1 0 1 2 3
pi : 0.3 0.1 0.1 0.3 0.2

Find the mean and standard deviation of each of the following probability distribution :

xi :  -2 -1 0 1 2
pi :  0.1 0.2 0.4 0.2 0.1

Find the mean and standard deviation of each of the following probability distribution :

xi :  -3 -1 0 1 3
pi :  0.05 0.45 0.20 0.25 0.05

Find the mean variance and standard deviation of the following probability distribution 

xi : a b
pi : p q
where p + q = 1 .

Two bad eggs are accidently mixed up with ten good ones. Three eggs are drawn at random with replacement from this lot. Compute the mean for the number of bad eggs drawn.


A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.

 

Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:

Xxi: -2 -1 0 1
P(Xxi) :
\[\frac{1 - a}{4}\]
 
\[\frac{1 + 2a}{4}\]
\[\frac{1 - 2a}{4}\]
\[\frac{1 + a}{4}\]

If the probability distribution of a random variable X is given by Write the value of k.

X = xi : 1 2 3 4
P (X = xi) : 2k 4k 3k k

 


A random variable has the following probability distribution: 

X = xi : 1 2 3 4
P (X = xi) : k 2k 3k 4k

Write the value of P (X ≥ 3).

 

A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


A random variable has the following probability distribution:

X = xi : 0 1 2 3 4 5 6 7
P (X = xi) : 0 2 p 2 p  3 p  p2 p2 p2 2 p 

The value of p is


Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. 


Two fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X. Also find E(X).


Demand function x, for a certain commodity is given as x = 200 - 4p where p is the unit price. Find :
(a) elasticity of demand as function of p.
(b) elasticity of demand when p = 10 , interpret your result.


Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).


If the demand function is D = 150 - p2 - 3p, find marginal revenue, average revenue and elasticity of demand for price p = 3. 


The following data gives the marks of 20 students in mathematics (X) and statistics (Y) each out of 10, expressed as (x, y). construct ungrouped frequency distribution considering single number as a class :
(2, 7) (3, 8) (4, 9) (2, 8) (2, 8) (5, 6) (5 , 7) (4, 9) (3, 8) (4, 8) (2, 9) (3, 8) (4, 8) (5, 6) (4, 7) (4, 7) (4, 6 ) (5, 6) (5, 7 ) (4, 6 )


John and Mathew started a business with their capitals in the ratio 8 : 5. After 8 months, john added 25% of his earlier capital as further investment. At the same time, Mathew withdrew 20% of bis earlier capital. At the end of the year, they earned ₹ 52000 as profit. How should they divide the profit between them? 


A random variable X has the following probability distribution : 

X = x -2 -1 0 1 2 3
P(x) 0.1 k 0.2 2k 0.3 k

Find the value of k and calculate mean. 


Write the negation of the following statements : 

(a) Chetan has black hair and blue eyes. 
(b) ∃ x ∈ R such that x2 + 3 > 0. 


If p : It is a day time , q : It is warm 
Give the verbal statements for the following symbolic statements : 
(a) p ∧ ∼ q (b) p v q (c) p ↔ q 


Find the premium on a property worth ₹12,50,000 at 3% if the property is fully insured. 


The following table gives the age of the husbands and of the wives : 

Age of wives (in years)

Age of husbands (in years)

20-30  30- 40  40- 50  50- 60 
15-25  5 9 3 -
25-35  - 10 25 2
35-45  - 1 12 2
45-55  - - 4 16
55-65  - - - 4

Find the marginal frequency distribution of the age of husbands. 


Verify whether the following function can be regarded as probability mass function (p.m.f.) for the given values of X : 

X -1 0 1
P(X = x) -0.2 1 0.2

The p.m.f. of a random variable X is
`"P"(x) = 1/5` , for x = I, 2, 3, 4, 5 
        = 0 , otherwise.
Find E(X).


The defects on a plywood sheet occur at random with an average of the defect per 50 sq. ft. What Is the probability that such sheet will have-

(a) No defects
(b) At least one defect 
[Use e-1 = 0.3678]


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


A random variable X has the following probability distribution :

x = x 0 1 2 3       7
P(X=x) 0 k 2k 2k 3k k2 2k2 7k2 + k

Determine (i) k

(ii) P(X> 6)

(iii) P(0<X<3).


Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of 2 successes


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.


A pair of dice is thrown 3 times. If getting a doublet is considered a success, find the probability of two successes


Defects on plywood sheet occur at random with the average of one defect per 50 sq.ft. Find the probability that such a sheet has:

  1. no defect
  2. at least one defect
    Use e−1 = 0.3678

Solve the following problem :

Find the probability of the number of successes in two tosses of a die, where success is defined as six appears in at least one toss.


Solve the following problem :

The probability that a lamp in the classroom will burn is 0.3. 3 lamps are fitted in the classroom. The classroom is unusable if the number of lamps burning in it is less than 2. Find the probability that the classroom cannot be used on a random occasion.


Solve the following problem :

The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


Solve the following problem :

A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 1 terminal requires attention during a week.


Solve the following problem :

In a large school, 80% of the students like mathematics. A visitor asks each of 4 students, selected at random, whether they like mathematics.

Find the probability that the visitor obtains the answer yes from at least 3 students.


Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as six appears on at least one die


Let a pair of dice be thrown and the random variable X be the sum of the numbers that appear on the two dice. Find the mean or expectation of X and variance of X


Let X be a discrete random variable. The probability distribution of X is given below:

X 30 10 – 10
P(X) `1/5` `3/10` `1/2`

Then E(X) is equal to ______.


A discrete random variable X has the probability distribution given as below:

X 0.5 1 1.5 2
P(X) k k2 2k2 k

Find the value of k


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Calculate `"V"("X"/2)`


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Variance of X.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine the value of k.


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Determine P(X ≤ 2) and P(X > 2)


The probability distribution of a random variable X is given below:

X 0 1 2 3
P(X) k `"k"/2` `"k"/4` `"k"/8`

Find P(X ≤ 2) + P (X > 2)


Two probability distributions of the discrete random variable X and Y are given below.

X 0 1 2 3
P(X) `1/5` `2/5` `1/5` `1/5`

 

Y 0 1 2 3
P(Y) `1/5` `3/10` `2/10` `1/10`

Prove that E(Y2) = 2E(X).


Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate P(X ≥ 4)


For the following probability distribution:

X – 4 – 3 – 2 – 1 0
P(X) 0.1 0.2 0.3 0.2 0.2

E(X) is equal to ______.


For the following probability distribution:

X 1 2 3 4
P(X) `1/10` `3/10` `3/10` `2/5`

E(X2) is equal to ______.


If the p.m.f of a r. v. X is

P(x) = `c/x^3`, for x = 1, 2, 3

        = 0, otherwise

then E(X) = ______.


Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.


A person throws two fair dice. He wins ₹ 15 for throwing a doublet (same numbers on the two dice), wins ₹ 12 when the throw results in the sum of 9, and loses ₹ 6 for any other outcome on the throw. Then the expected gain/loss (in ₹) of the person is ______.


The probability that a bomb will hit the target is 0.8. Complete the following activity to find, the probability that, out of 5 bombs exactly 2 will miss the target.

Solution: Here, n = 5, X =number of bombs that hit the target

p = probability that bomb will hit the target = `square`

∴ q = 1 - p = `square`

Here, `X∼B(5,4/5)`

∴ P(X = x) = `""^"n""C"_x"P"^x"q"^("n" - x) = square`

P[Exactly 2 bombs will miss the target] = P[Exactly 3 bombs will hit the target]

= P(X = 3)

=`""^5"C"_3(4/5)^3(1/5)^2=10(4/5)^3(1/5)^2`

∴ P(X = 3) = `square`


A large chain retailer purchases an electric device from the manufacturer. The manufacturer indicates that the defective rate of the device is 10%. The inspector of the retailer randomly selects 4 items from a shipment. Complete the following activity to find the probability that the inspector finds at most one defective item in the 4 selected items.

Solution:

Here, n = 4

p = probability of defective device = 10% = `10/100 = square`

∴ q = 1 - p = 1 - 0.1 = `square`

X ∼ B(4, 0.1)

 `P(X=x)=""^n"C"_x p^x q^(n-x)= ""^4"C"_x (0.1)^x (0.9)^(4 - x)`

P[At most one defective device] = P[X ≤ 1]

= P[X=0] + P[X=1]

= `square+square`

∴ P[X ≤ 1] = `square`


A box contains 30 fruits, out of which 10 are rotten. Two fruits are selected at random one by one without replacement from the box. Find the probability distribution of the number of unspoiled fruits. Also find the mean of the probability distribution.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×