Advertisements
Advertisements
प्रश्न
Consider the probability distribution of a random variable X:
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
Calculate
उत्तर
Here, we have
X | 0 | 1 | 2 | 3 | 4 |
P(X) | 0.1 | 0.25 | 0.3 | 0.2 | 0.15 |
We know that: Var(X) = E(X2) – [E(X)]2
Where E(X) =
∴ E(X) = 0 × 0.1 + 1 × 0.25 + 2 × 0.3 + 3 × 0.2 + 4 × 0.15
= 0 + 0.25 + 0.6 + 0.6 + 0.6
= 2.05
E(X2) = 0 × 0.1 + 1 × 0.25 + 4 × 0.3 + 9 × 0.2 + 16 × 0.15
= 0 + 0.25 + 1.2 + 1.8 + 2.40
= 5.65
=
=
=
= 0.361875 .......
APPEARS IN
संबंधित प्रश्न
From a lot of 15 bulbs which include 5 defectives, a sample of 4 bulbs is drawn one by one with replacement. Find the probability distribution of number of defective bulbs. Hence find the mean of the distribution.
Four cards are drawn simultaneously from a well shuffled pack of 52 playing cards. Find the probability distribution of the number of aces.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
|
|
|
Find P(X ≤ 2) + P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
Find the mean and standard deviation of each of the following probability distribution :
xi : | 1 | 2 | 3 | 4 |
pi : | 0.4 | 0.3 | 0.2 | 0.1 |
A discrete random variable X has the probability distribution given below:
X: | 0.5 | 1 | 1.5 | 2 |
P(X): | k | k2 | 2k2 | k |
Determine the mean of the distribution.
A pair of fair dice is thrown. Let X be the random variable which denotes the minimum of the two numbers which appear. Find the probability distribution, mean and variance of X.
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses.
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
Mark the correct alternative in the following question:
For the following probability distribution:
X : | 1 | 2 | 3 | 4 |
P(X) : |
|
|
|
|
The value of E(X2) is
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
A fair coin is tossed 12 times. Find the probability of getting exactly 7 heads .
The p.m.f. of a random variable X is
= 0 , otherwise.
Find E(X).
Amit and Rohit started a business by investing ₹20,000 each. After 3 months Amit withdrew ₹5,000 and Rohit put in ₹5,000 additionally. How should a profit of ₹12,800 be divided between them at the end of the year?
A random variable X has the following probability distribution :
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
P(X) | C | 2C | 2C | 3C | C2 | 2C2 | 7C2+C |
Find the value of C and also calculate the mean of this distribution.
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 | 3 | 4 |
P(x) | 0.1 | 0.5 | 0.2 | –0.1 | 0.3 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
10 balls are marked with digits 0 to 9. If four balls are selected with replacement. What is the probability that none is marked 0?
State whether the following is True or False :
If r.v. X assumes the values 1, 2, 3, ……. 9 with equal probabilities, E(x) = 5.
Solve the following problem :
Following is the probability distribution of a r.v.X.
x | – 3 | – 2 | –1 | 0 | 1 | 2 | 3 |
P(X = x) | 0.05 | 0.1 | 0.15 | 0.20 | 0.25 | 0.15 | 0.1 |
Find the probability that X is even.
A discrete random variable X has the probability distribution given as below:
X | 0.5 | 1 | 1.5 | 2 |
P(X) | k | k2 | 2k2 | k |
Find the value of k
Find the probability distribution of the maximum of the two scores obtained when a die is thrown twice. Determine also the mean of the distribution.
Find the mean number of defective items in a sample of two items drawn one-by-one without replacement from an urn containing 6 items, which include 2 defective items. Assume that the items are identical in shape and size.
A random variable X has the following probability distribution:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Find:
- k
- P(X < 3)
- P(X > 4)
Two numbers are selected from first six even natural numbers at random without replacement. If X denotes the greater of two numbers selected, find the probability distribution of X.
A primary school teacher wants to teach the concept of 'larger number' to the students of Class II.
To teach this concept, he conducts an activity in his class. He asks the children to select two numbers from a set of numbers given as 2, 3, 4, 5 one after the other without replacement.
All the outcomes of this activity are tabulated in the form of ordered pairs given below:
2 | 3 | 4 | 5 | |
2 | (2, 2) | (2, 3) | (2, 4) | |
3 | (3, 2) | (3, 3) | (3, 5) | |
4 | (4, 2) | (4, 4) | (4, 5) | |
5 | (5, 3) | (5, 4) | (5, 5) |
- Complete the table given above.
- Find the total number of ordered pairs having one larger number.
- Let the random variable X denote the larger of two numbers in the ordered pair.
Now, complete the probability distribution table for X given below.
X 3 4 5 P(X = x) - Find the value of P(X < 5)
- Calculate the expected value of the probability distribution.
Five numbers x1, x2, x3, x4, x5 are randomly selected from the numbers 1, 2, 3, ......., 18 and are arranged in the increasing order such that x1 < x2 < x3 < x4 < x5. What is the probability that x2 = 7 and x4 = 11?