Advertisements
Advertisements
प्रश्न
Assume that the chances of the patient having a heart attack are 40%. It is also assumed that a meditation and yoga course reduce the risk of heart attack by 30% and prescription of certain drug reduces its chances by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga?
उत्तर
Let events E1, E2 and E be the event of benefiting from meditation and yoga, the event of being treated with medicine and the event of having a heart attack respectively, then
`P (E_1) = 1/2 P (E_2) = 1/2 P(E) = 40% = 0.4`
It is said that meditation and yoga reduce the risk of heart attack by 30%.
That means there is a 70% risk of heart attack.
Or `E/E_1` = Meditation and yoga causes heart attack.
`P(E/E_1)` = 0.40 × 7.0 = 0.28
The drug reduces the risk of heart attack by 25%.
That means the risk of heart attack due to the drug is 75%.
∴ `P(E/E_2) = 0.4 × 0.75 = 0.30`
Thus, `P(E_1) = 1/2, P(E_2) = 1/2`
`P(E/E_1) = 0.28, P(E/E_2) = 0.30`
Hence, by Bayes' theorem,
`P(E_1/E) = (P(E_1) xx P((E)/E_1))/(P(E_1) xx P((E)/E_1) + P(E_2) xx P((E)/E_2))`
= `(1/2 xx 0.28)/(1/2 xx 0.28 + 1/2 xx 0.30)`
= `28/(28 + 30)`
= `28/58`
= `14/29`
APPEARS IN
संबंधित प्रश्न
State the following are not the probability distributions of a random variable. Give reasons for your answer.
X | 0 | 1 | 2 |
P (X) | 0.4 | 0.4 | 0.2 |
State the following are not the probability distributions of a random variable. Give reasons for your answer.
Y | -1 | 0 | 1 |
P(Y) | 0.6 | 0.1 | 0.2 |
Find the probability distribution of number of heads in four tosses of a coin.
Find the probability distribution of the number of successes in two tosses of a die, where a success is defined as
(i) number greater than 4
(ii) six appears on at least one die
Find the probability distribution of Y in two throws of two dice, where Y represents the number of times a total of 9 appears.
Two cards are drawn simultaneously from a well-shuffled deck of 52 cards. Find the probability distribution of the number of successes, when getting a spade is considered a success.
From a lot of 10 bulbs, which includes 3 defectives, a sample of 2 bulbs is drawn at random. Find the probability distribution of the number of defective bulbs.
The probability distribution of a random variable X is given below:
x | 0 | 1 | 2 | 3 |
P(X) | k |
\[\frac{k}{2}\]
|
\[\frac{k}{4}\]
|
\[\frac{k}{8}\]
|
Determine P(X ≤ 2) and P(X > 2) .
Find the mean and standard deviation of each of the following probability distribution:
xi : | 1 | 3 | 4 | 5 |
pi: | 0.4 | 0.1 | 0.2 | 0.3 |
Find the mean and standard deviation of each of the following probability distribution:
xi : | −1 | 0 | 1 | 2 | 3 |
pi : | 0.3 | 0.1 | 0.1 | 0.3 | 0.2 |
Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X.
If the probability distribution of a random variable X is given by Write the value of k.
X = xi : | 1 | 2 | 3 | 4 |
P (X = xi) : | 2k | 4k | 3k | k |
If X is a random-variable with probability distribution as given below:
X = xi : | 0 | 1 | 2 | 3 |
P (X = xi) : | k | 3 k | 3 k | k |
The value of k and its variance are
A pair of dice is thrown 4 times. If getting a doublet is considered a success, find the probability distribution of the number of successes and, hence, find its mean.
A die is tossed twice. A 'success' is getting an even number on a toss. Find the variance of number of successes.
Five bad oranges are accidently mixed with 20 good ones. If four oranges are drawn one by one successively with replacement, then find the probability distribution of number of bad oranges drawn. Hence find the mean and variance of the distribution.
Three fair coins are tossed simultaneously. If X denotes the number of heads, find the probability distribution of X.
Using the truth table verify that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).
Verify the following function, which can be regarded as p.m.f. for the given values of X :
X = x | -1 | 0 | 1 |
P(x) | -0.2 | 1 | 0.2 |
Compute the age specific death rate for the following data :
Age group (years) | Population (in thousands) | Number of deaths |
Below 5 | 15 | 360 |
5-30 | 20 | 400 |
Above 30 | 10 | 280 |
A departmental store gives trafnfng to the salesmen in service followed by a test. It is experienced that the performance regarding sales of any salesman is linearly related to the scores secured by him. The following data gives the test scores and sales made by nine (9) salesmen during a fixed period.
Test scores (X) | 16 | 22 | 28 | 24 | 29 | 25 | 16 | 23 | 24 |
Sales (Y) (₹ in hundreds) | 35 | 42 | 57 | 40 | 54 | 51 | 34 | 47 | 45 |
(a) Obtain the line of regression of Y on X.
(b) Estimate Y when X = 17.
Write the negation of the following statements :
(a) Chetan has black hair and blue eyes.
(b) ∃ x ∈ R such that x2 + 3 > 0.
A card is drawn at random and replaced four times from a well shuftled pack of 52 cards. Find the probability that -
(a) Two diamond cards are drawn.
(b) At least one diamond card is drawn.
A random variable X has the following probability distribution :
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
P(X) | C | 2C | 2C | 3C | C2 | 2C2 | 7C2+C |
Find the value of C and also calculate the mean of this distribution.
Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.
The p.d.f. of r.v. of X is given by
f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .
Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).
Determine whether each of the following is a probability distribution. Give reasons for your answer.
x | 0 | 1 | 2 |
P(x) | 0.3 | 0.4 | 0.2 |
A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at most 2 successes.
The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1
Solve the following problem :
The probability that a component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 components tested survive.
Solve the following problem :
The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.
Solve the following problem :
A computer installation has 3 terminals. The probability that any one terminal requires attention during a week is 0.1, independent of other terminals. Find the probabilities that 0
Four balls are to be drawn without replacement from a box containing 8 red and 4 white balls. If X denotes the number of red ball drawn, find the probability distribution of X.
Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1), "for" x = 1"," 2"," 3"," 4),(2"k"x, "for" x = 5"," 6"," 7),(0, "Otherwise"):}`
where k is a constant. Calculate E(X)
A random variable x has to following probability distribution.
X | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
P(x) | 0 | k | 2k | 2k | 3k | k2 | 2k2 | 7k2 + k |
Determine
Two balls are drawn at random one by one with replacement from an urn containing equal number of red balls and green balls. Find the probability distribution of number of red balls. Also, find the mean of the random variable.