हिंदी

A Random Variable X Has the Following Probability Distribution :Find the Value of C and Also Calculate the Mean of this Distribution. - Mathematics

Advertisements
Advertisements

प्रश्न

A random variable X has the following probability distribution :

X 0 1 2 3 4 5 6
P(X) C 2C 2C 3C C2 2C2 7C2+C

Find the value of C and also calculate the mean of this distribution.

योग

उत्तर

As `sum "P"("X") = 1`

∴ `"C" + 2"C" + 2"C" + 3"C" + "C"^2 + 2"C"^2 + 7"C"^2 + "C"  = 1`

⇒ `10"C"^2 + 9"C" -1 = 0`

⇒ `(10"C" -1)("C" + 1)= 0`

∵  `"C"  != -1`

so, `"C" = (1)/(10)`.


Also mean = `sum "X""P"("X") = 0 xx "C" + 1 xx 2"C" + 2 xx 2"C" + 3 xx 3"C" + 4 xx "C"^2 + 5 xx 2"C"^2 + 6 xx (7"C"^2 + "C")`

⇒ = `21"C" + 56"C"^2 = 56 xx (1)/(100) + 21 xx (1)/(10) = (266)/(100) or 2.66`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्न

Of the students in a college, it is known that 60% reside in hostel and 40% are day scholars (not residing in hostel). Previous year results report that 30% of all students who reside in hostel attain A grade and 20% of day scholars attain A grade in their annual examination. At the end of the year, one student is chosen at random from the college and he has an A grade, what is the probability that the student is hostler?


Find the probability distribution of number of heads in four tosses of a coin.


Three persons A, B and C shoot to hit a target. If A hits the target four times in five trials, B hits it three times in four trials and C hits it two times in three trials, find the probability that:

1) Exactly two persons hit the target.

2) At least two persons hit the target.

3) None hit the target.


A random variable X has the following probability distribution:

Values of X : −2 −1 0 1 2 3
P (X) : 0.1 k 0.2 2k 0.3 k
 

Find the value of k


A random variable X has the following probability distribution:

Values of X : 0 1 2 3 4 5 6 7 8
P (X) : a 3a 5a 7a 9a 11a 13a 15a 17a

Determine:
(i) The value of a
(ii) P (X < 3), P (X ≥ 3), P (0 < X < 5).


Two dice are thrown together and the number appearing on them noted. X denotes the sum of the two numbers. Assuming that all the 36 outcomes are equally likely, what is the probability distribution of X?


From a lot containing 25 items, 5 of which are defective, 4 are chosen at random. Let X be the number of defectives found. Obtain the probability distribution of X if the items are chosen without replacement .

 

The probability distribution of a random variable X is given below:

x 0 1 2 3
P(X) k
\[\frac{k}{2}\]
\[\frac{k}{4}\]
\[\frac{k}{8}\]

 Find P(X ≤ 2) + P(X > 2) .

 

Find the mean and standard deviation of each of the following probability distribution :

xi : 1 2 3 4
pi : 0.4 0.3 0.2 0.1

A discrete random variable X has the probability distribution given below:

X: 0.5 1 1.5 2
P(X): k k2 2k2 k

Find the value of k.


A die is tossed twice. A 'success' is getting an odd number on a toss. Find the variance of the number of successes.


Write the values of 'a' for which the following distribution of probabilities becomes a probability distribution:

Xxi: -2 -1 0 1
P(Xxi) :
\[\frac{1 - a}{4}\]
 
\[\frac{1 + 2a}{4}\]
\[\frac{1 - 2a}{4}\]
\[\frac{1 + a}{4}\]

A random variable X has the following probability distribution:

X : 1 2 3 4 5 6 7 8
P (X) : 0.15 0.23 0.12 0.10 0.20 0.08 0.07 0.05

For the events E = {X : X is a prime number}, F = {X : X < 4}, the probability P (E ∪ F) is


For the following probability density function (p. d. f) of X, find P(X < 1) and P(|x| < 1) 

`f(x) = x^2/18, -3 < x < 3`

            = 0,             otherwise


Alex spends 20% of his income on food items and 12% on conveyance. If for the month of June 2010, he spent ₹900 on conveyance, find his expenditure on food items during the same month. 


An urn contains 5 red and 2 black balls. Two balls are drawn at random. X denotes number of black balls drawn. What are possible values of X?


Find expected value and variance of X, where X is number obtained on uppermost face when a fair die is thrown.


The p.d.f. of r.v. of X is given by

f (x) = `k /sqrtx` , for 0 < x < 4 and = 0, otherwise. Determine k .

Determine c.d.f. of X and hence P (X ≤ 2) and P(X ≤ 1).


Determine whether each of the following is a probability distribution. Give reasons for your answer.

z 3 2 1 0 -1
P(z) 0.3 0.2 0.4. 0.05 0.05

Find the probability distribution of the number of successes in two tosses of a die if success is defined as getting a number greater than 4.


A die is thrown 4 times. If ‘getting an odd number’ is a success, find the probability of at least 3 successes


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of X ≤ 1


The probability that a bulb produced by a factory will fuse after 200 days of use is 0.2. Let X denote the number of bulbs (out of 5) that fuse after 200 days of use. Find the probability of (i) X = 0, (ii) X ≤ 1, (iii) X > 1, (iv) X ≥ 1.


In a multiple choice test with three possible answers for each of the five questions, what is the probability of a candidate getting four or more correct answers by random choice?


Solve the following problem :

The probability that a machine will produce all bolts in a production run within the specification is 0.9. A sample of 3 machines is taken at random. Calculate the probability that all machines will produce all bolts in a production run within the specification.


Find the mean and variance of the number randomly selected from 1 to 15


Consider the probability distribution of a random variable X:

X 0 1 2 3 4
P(X) 0.1 0.25 0.3 0.2 0.15

Variance of X.


Let X be a discrete random variable whose probability distribution is defined as follows:
P(X = x) = `{{:("k"(x + 1),  "for"  x = 1"," 2"," 3"," 4),(2"k"x,  "for"  x = 5"," 6"," 7),(0,  "Otherwise"):}`
where k is a constant. Calculate the value of k


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(X)


The probability distribution of a random variable x is given as under:
P(X = x) = `{{:("k"x^2,  "for"  x = 1"," 2"," 3),(2"k"x,  "for"  x = 4"," 5"," 6),(0,  "otherwise"):}`
where k is a constant. Calculate E(3X2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×