Advertisements
Advertisements
प्रश्न
`2sin^-1 3/5-tan^-1 17/31=pi/4`
उत्तर
LHS = `2sin^-1 3/5-tan^-1 17/31`
`=2tan^-1 (3/4)/sqrt(1-9/25)-tan^-1 17/31` `[becausesin^-1x=tan^-1 x/sqrt(1-x^2)]`
`=2tan^-1 (3/5)/(4/5)-tan^-1 17/31`
`=2tan^-1 3/4-tan^-1 17/31`
`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1 17/31` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(3/2)/(7/16)}-tan^-1 17/31`
`=tan^-1 24/7-tan^-1 17/31`
`=tan^-1((24/7-17/31)/(1+24/7xx17/31))` `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`
`=tan^-1((625/217)/(625/217))`
`=tan^-1 1=pi/4=`RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
`sin(sin^-1 1/5+cos^-1x)=1`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the range of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .