मराठी

Solve the following for x : tan^−1((x−2)/(x−3))+tan^−1((x+2)/(x+3))=π/4,|x|<1 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`

उत्तर

 

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4`

`=>tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=tan^(-1)1`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1-tan^(-1)((x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(1-(x+2)/(x+3))/(1+(x+2)/(x+3))`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)(x+3-x-2)/(x+3+x+2)`

`=>tan^(-1)((x-2)/(x-3))=tan^(-1)1/(2x+5)`

`=>(x-2)/(x-3)=1/(2x+5)`

`=>(x-2)(2x+5)=x-3`

`=>2x^2-4x+5x-10=x-3`

`=>2x^2=7`

`=>x=+-sqrt(7/2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1(cos3)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`sec{cot^-1(-5/12)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the range of tan−1 x.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×