मराठी

If Tan − 1 ( √ 1 + X 2 − √ 1 − X 2 √ 1 + X 2 + √ 1 − X 2 ) = α, Then X2 = (A) Sin 2 α (B) Sin α (C) Cos 2 α (D) Cos α - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =



पर्याय

  • sin 2 α

  • sin α

  • cos 2 α

  • cos α

MCQ

उत्तर

(a) sin 2α
\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right) = \alpha\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} = \tan\alpha\]
\[\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \times \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} = \tan\alpha\]
\[ \Rightarrow \frac{\left( \sqrt{1 + x^2} \right)^2 + \left( \sqrt{1 - x^2} \right)^2 - 2\sqrt{1 + x^2}\sqrt{1 - x^2}}{\left( \sqrt{1 + x^2} \right)^2 - \left( \sqrt{1 - x^2} \right)^2} = \tan\alpha\]
\[ \Rightarrow \frac{1 - \sqrt{1 - x^4}}{x^2} = \tan\alpha\]
\[ \Rightarrow x^2 \tan\alpha = 1 - \sqrt{1 - x^4}\]
\[ \Rightarrow \sqrt{1 - x^4} = 1 - x^2 \tan\alpha\]
\[ \Rightarrow 1 - x^4 = 1 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha\]
\[ \Rightarrow x^4 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^4 \sec^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^2 \left( x^2 \sec^2 \alpha - 2\tan\alpha \right) = 0\]
\[ \Rightarrow x^2 \sec^2 \alpha - 2\tan\alpha = 0 \left[ \because x^2 \neq 0 \right]\]
\[ \Rightarrow x^2 \sec^2 \alpha = 2\tan\alpha\]
\[ \Rightarrow x^2 = \frac{2\tan\alpha}{\sec^2 \alpha} = 2\sin\alpha\cos\alpha = \sin2\alpha\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 1 | पृष्ठ ११९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate:

`cosec{cot^-1(-12/5)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×