Advertisements
Advertisements
प्रश्न
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
पर्याय
sin 2 α
sin α
cos 2 α
cos α
उत्तर
(a) sin 2α
\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right) = \alpha\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} = \tan\alpha\]
\[\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \times \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} = \tan\alpha\]
\[ \Rightarrow \frac{\left( \sqrt{1 + x^2} \right)^2 + \left( \sqrt{1 - x^2} \right)^2 - 2\sqrt{1 + x^2}\sqrt{1 - x^2}}{\left( \sqrt{1 + x^2} \right)^2 - \left( \sqrt{1 - x^2} \right)^2} = \tan\alpha\]
\[ \Rightarrow \frac{1 - \sqrt{1 - x^4}}{x^2} = \tan\alpha\]
\[ \Rightarrow x^2 \tan\alpha = 1 - \sqrt{1 - x^4}\]
\[ \Rightarrow \sqrt{1 - x^4} = 1 - x^2 \tan\alpha\]
\[ \Rightarrow 1 - x^4 = 1 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha\]
\[ \Rightarrow x^4 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^4 \sec^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^2 \left( x^2 \sec^2 \alpha - 2\tan\alpha \right) = 0\]
\[ \Rightarrow x^2 \sec^2 \alpha - 2\tan\alpha = 0 \left[ \because x^2 \neq 0 \right]\]
\[ \Rightarrow x^2 \sec^2 \alpha = 2\tan\alpha\]
\[ \Rightarrow x^2 = \frac{2\tan\alpha}{\sec^2 \alpha} = 2\sin\alpha\cos\alpha = \sin2\alpha\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate:
`cosec{cot^-1(-12/5)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`