Advertisements
Advertisements
प्रश्न
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
उत्तर
`(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36`
⇒ `(sin^-1x)^2+(pi/2-sin^-1x)^2=(17pi^2)/36`
Let `sin^-1x=y`
`therefore(y)^2+(pi/2-y)^2=(17pi^2)/36`
⇒ `y^2+pi^2/4+y^2-2xxpi/2xxy=(17pi^2)/36`
⇒ `2y^2-piy=(2pi^2)/9`
⇒ `18y^2-9piy-2pi^2=0`
⇒ `18y^2-12piy+3piy-2pi^2=0`
⇒ `6y(3y-2pi)+pi(3y+2pi)=0`
⇒ `(3y-2pi)(6y+pi)=0`
⇒ `y=pi/6` [Neglecting `y=2/3pi` as it is not satisfying the question]
`thereforex=siny=sin(-pi/6)=-1/2`
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin pi/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`tan(cos^-1 8/17)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the range of tan−1 x.
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the domain of `sec^(-1)(3x-1)`.
Find the value of `sin^-1(cos((33π)/5))`.