मराठी

If `(Sin^-1x)^2+(Cos^-1x)^2=(17pi^2)/36,` Find X - Mathematics

Advertisements
Advertisements

प्रश्न

If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x

उत्तर

`(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36`

 ⇒ `(sin^-1x)^2+(pi/2-sin^-1x)^2=(17pi^2)/36`

Let `sin^-1x=y`

`therefore(y)^2+(pi/2-y)^2=(17pi^2)/36`

⇒ `y^2+pi^2/4+y^2-2xxpi/2xxy=(17pi^2)/36`

⇒ `2y^2-piy=(2pi^2)/9`

⇒ `18y^2-9piy-2pi^2=0`

⇒ `18y^2-12piy+3piy-2pi^2=0`

⇒ `6y(3y-2pi)+pi(3y+2pi)=0`

⇒ `(3y-2pi)(6y+pi)=0`

⇒ `y=pi/6`   [Neglecting `y=2/3pi` as it is not satisfying the question]

`thereforex=siny=sin(-pi/6)=-1/2`

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.10 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 5 | पृष्ठ ६६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`tan(cos^-1  8/17)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the range of tan−1 x.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1)(3x-1)`.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×