मराठी

If Cos ( Tan − 1 X + Cot − 1 √ 3 ) = 0 , Find the Value of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

उत्तर

\[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\]
\[ \Rightarrow \cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = \cos\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \tan^{- 1} x + \cot^{- 1} \sqrt{3} = \frac{\pi}{2}\]
\[ \Rightarrow x = \sqrt{3} \left[ \because \tan^{- 1} y + \cot^{- 1} y = \frac{\pi}{2} \right]\]
\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.15 [पृष्ठ ११९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 56 | पृष्ठ ११९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (17pi)/8)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the range of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×