Advertisements
Advertisements
प्रश्न
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
उत्तर
\[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\]
\[ \Rightarrow \cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = \cos\left( \frac{\pi}{2} \right)\]
\[ \Rightarrow \tan^{- 1} x + \cot^{- 1} \sqrt{3} = \frac{\pi}{2}\]
\[ \Rightarrow x = \sqrt{3} \left[ \because \tan^{- 1} y + \cot^{- 1} y = \frac{\pi}{2} \right]\]
\[\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
Find the domain of `sec^(-1) x-tan^(-1)x`
tanx is periodic with period ____________.