मराठी

Evaluate the Following: `Sec^-1(Sec (13pi)/4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`sec^-1(sec  (13pi)/4)`

उत्तर

We know that

sec-1 (sec θ) = θ,    [0, π/2) ∪ (π/2, π]

 We have 

`sec^-1(sec  (13pi)/4)=sec^-1[sec(4pi-(3pi)/4)]`

`=sec^-1[sec((3pi)/4)]`

`=(3pi)/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 4.7 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


`sin^-1(sin  pi/6)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cosec{cot^-1(-12/5)}`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  2/3=1/2tan^-1  12/5`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×