हिंदी

If U = Cot − 1 √ Tan θ − Tan − 1 √ Tan θ Then , Tan ( π 4 − U 2 ) = (A) √ Tan θ (B) √ Cot θ (C) Tan θ (D) Cot θ - Mathematics

Advertisements
Advertisements

प्रश्न

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]

विकल्प

  • `sqrt(tantheta`

  • `sqrt(cottheta)`

  •  tan θ

  • cot θ

MCQ

उत्तर

(a) `sqrt(tantheta`
Let \[y = \sqrt{\tan\theta}\]
Then, 
\[u = \cot^{- 1} \sqrt{\tan\theta} - \tan^{- 1} \sqrt{\tan\theta}\]
\[ \Rightarrow u = \cot^{- 1} y - \tan^{- 1} y\]
\[ \Rightarrow u = \frac{\pi}{2} - 2 \tan^{- 1} y \left[ \because \tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 2 \tan^{- 1} y = \frac{\pi}{2} - u \]
\[ \Rightarrow \tan^{- 1} y = \frac{\pi}{4} - \frac{u}{2}\]
\[ \Rightarrow y = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right)\]
\[ \Rightarrow \sqrt{\tan\theta} = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) \left[ \because y = \sqrt{\tan\theta} \right]\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 12 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If sin−1 − cos−1 x = `pi/6` , then x = 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×