हिंदी

Evaluate the Following: `Tan^-1(Tan4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1(tan4)`

उत्तर

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan4)=tan^-1[tan(-pi+4)]`

= 4 - π

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.7 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 (cos 6).


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×