हिंदी

Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`

उत्तर

Let `sin^-1  1/2=y`

Then,

`siny=1/2`

`thereforetan^-1{2cos(2sin^-1  1/2)}=tan^-1{2cos2y}`

`=tan^-1(2(1-2sin^2y))`     `[becausecos2x=1-2sin^2x]`

`=tan^-1{2(1-2xx1/4)}`     `[becausesiny=1/2]`

`=tan^-1{2xx1/2}`

`=tan^-1 1`

`=pi/4`

 

`thereforetan^-1{2cos(2sin^-1  1/2)}=pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 7.1 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin  (17pi)/8)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


`sin(sin^-1  1/5+cos^-1x)=1`


`5tan^-1x+3cot^-1x=2x`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×