Advertisements
Advertisements
प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
उत्तर
We have,
sin−1x+sin−1(1−x)=cos−1x
`sin^−1 x -cos^−1 x=-sin^−1 (1−x)`
`sin^−1 x -cos^−1 x=sin^−1 (x-1) ......................(1) [because sin^(-1)(-x)=-sin^-1x]`
`Put sin^-1 x=theta and cos^-1 x= phi`
`sin theta=x and cos phi=x`
`then cos theta=sqrt(1-sin^2theta) and sin phi=sqrt(1-cos^2 phi)`
`cos theta=sqrt(1-x^2) and sin phi =sqrt(1-x^2)`
Applying the formula:
`sin(theta-phi)=sin theta cos phi-cos theta sin phi` , we get
`sin(theta-phi)=x.x-sqrt(1-x^2)sqrt(1-x^2)`
`sin(theta-phi)=x^2-(1-x^2)`
`sin(theta-phi)=x^2-1+x^2`
`sin(theta-phi)=2x^2-1`
`(theta-phi)=sin^-1(2x^2-1)`
`sin^-1x - cos^-1 x=sin^-1(2x^2-1).............(2)`
From (1) and (2), we get
`sin^-1 (2x^2-1)= sin^-1 (x-1)`
`2x^2-x=0`
`x(2x-1)=0`
`x=0 or 2x-1=0`
`x=0 or x=1/2`
APPEARS IN
संबंधित प्रश्न
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]