हिंदी

Solve the equation for x:sin^(−1)x+sin^(−1)(1−x)=cos^(−1)x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x

उत्तर

We have,

sin1x+sin1(1x)=cos1x

`sin^−1 x -cos^−1 x=-sin^−1 (1−x)`

`sin^−1 x -cos^−1 x=sin^−1 (x-1) ......................(1)   [because sin^(-1)(-x)=-sin^-1x]`

`Put sin^-1 x=theta and cos^-1 x= phi`

`sin theta=x and cos phi=x`

`then cos theta=sqrt(1-sin^2theta) and sin phi=sqrt(1-cos^2 phi)`

`cos theta=sqrt(1-x^2) and sin phi =sqrt(1-x^2)`

Applying the formula:

`sin(theta-phi)=sin theta cos phi-cos theta sin phi` , we get

`sin(theta-phi)=x.x-sqrt(1-x^2)sqrt(1-x^2)`

`sin(theta-phi)=x^2-(1-x^2)`

`sin(theta-phi)=x^2-1+x^2`

`sin(theta-phi)=2x^2-1`

`(theta-phi)=sin^-1(2x^2-1)`

`sin^-1x - cos^-1 x=sin^-1(2x^2-1).............(2)`

From (1)  and  (2), we get 

`sin^-1 (2x^2-1)= sin^-1 (x-1)`

`2x^2-x=0`

`x(2x-1)=0`

`x=0 or 2x-1=0`

`x=0 or x=1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 2 C

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If tan−1 3 + tan−1 x = tan−1 8, then x =


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×