Advertisements
Advertisements
प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
उत्तर
y=2 cos(logx)+3 sin(logx)
Differentiating both sides with respect to x, we get
`dy/dx=2xxd/dx cos(logx)+3xx d/dxsin(log x)`
`=-2sin(logx)xx1/x+3 cos(logx)xx1/x`
`=>x dy/dx=-2 sin(logx)+3 cos(logx)`
Again, differentiating both sides with respect to x, we get
`x (d^2y)/(dx^2)+dy/dx=-2cos(logx)xx1/x-3 sin(logx)xx1/x`
`x^2 (d^2y)/(dx^2)+xdy/dx=-[2 cos(logx)+3sin(logx)]`
`x^2 (d^2y)/(dx^2)+xdy/dx=-y`
`x^2 (d^2y)/(dx^2)+xdy/dx+y=0`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
sin (log x)
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
tan–1(x2 + y2) = a
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
Derivative of cot x° with respect to x is ____________.
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`