English

If y=2 cos(logx)+3 sin(logx), prove that x^2(d^2y)/(dx2)+x dy/dx+y=0 - Mathematics

Advertisements
Advertisements

Question

If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`

Solution

y=2 cos(logx)+3 sin(logx)

Differentiating both sides with respect to x, we get

`dy/dx=2xxd/dx cos(logx)+3xx d/dxsin(log x)`

`=-2sin(logx)xx1/x+3 cos(logx)xx1/x`

`=>x dy/dx=-2 sin(logx)+3 cos(logx)`

Again, differentiating both sides with respect to x, we get

`x (d^2y)/(dx^2)+dy/dx=-2cos(logx)xx1/x-3 sin(logx)xx1/x`

`x^2 (d^2y)/(dx^2)+xdy/dx=-[2 cos(logx)+3sin(logx)]`

`x^2 (d^2y)/(dx^2)+xdy/dx=-y`

`x^2 (d^2y)/(dx^2)+xdy/dx+y=0`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


`sin xy + x/y` = x2 – y


sec(x + y) = xy


(x2 + y2)2 = xy


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2, "if"  y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×