English

Differentiate x^sinx+(sinx)^cosx with respect to x. - Mathematics

Advertisements
Advertisements

Question

Differentiate xsinx+(sinx)cosx with respect to x.

Solution

`y=x^(sinx)+(sinx)^cosx`

`=>y=e^(sinxlogx)+e^(cosxlogsinx)`

Differentiating both sides with respect to x, we get

`dy/dx=e^(sinx logx)xx d/dx(sinxlogx)+e^(cosxlog sinx)xxd/dx(cosx log sinx)`

`dy/dx=x^(sinx)(sinxxx1/x+logx xx cosx)+(sin)^(cosx)(cosx xx 1/sinx xx cosx +log sinx)`

`dy/dx=x^(sinx)((sinx)/x+cosx logx)+(sinx)^(cosx)((cos^2x)/(sinx)-sinx log sinx)`

 

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 2 C

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×