Advertisements
Advertisements
Question
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
Solution
x2 + 6xy + y2 = 10 ...(i)
Differentiating both sides w.r.t. x, we get
`2x + 6(x ("d"y)/("d"x) + y) + 2y ("d"y)/("d"x)` = 0
∴ `2x + 6x ("d"y)/("d"x) + 6y + 2y ("d"y)/("d"x) = 0`
∴ `(2x + 6y) + (6x + 2y) ("d"y)/("d"x) = 0`
∴ `("d"y)/("d"x) = - (x + 3y)/(3x + y)` ...(ii)
∴ (3x + y) `("d"y)/("d"x)` = − (x + 3y)
Again, differentiating both sides w.r.t. x, we get
`(3x + y) ("d"^2y)/("d"x^2) + ("d"y)/("d"x) (3 + ("d"y)/("d"x)) = - (1 + 3 * ("d"y)/("d"x))`
∴ `3 ("d"y)/("d"x) + (("d"y)/("d"x))^2 + 1 + 3("d"y)/("d"x) = - ("d"^2y)/("d"x^2)`(y + 3x)
∴ `(("d"y)/("d"x))^2 + 6 ("d"y)/("d"x) + 1 = - ("d"^2y)/("d"x^2)`(y + 3x)
∴ `[- ((x + 3y)/(3x + y))]^2 + 6 [(- (x + 3y))/(3x + y)] + 1`
= `-("d"^2y)/("d"x^2)` (y + 3x) ...[From (ii)]
By solving, we get
`(x^2 + 9y^2 + 6xy - 6xy - 18x^2 - 18y^2 - 54xy + y^2 + 9x^2 + 6xy)/(y + 3x)^2 = - ("d"^2y)/("d"x^2)`(y + 3x)
∴ `- ("d"^2y)/("d"x^2) (y + 3x)^3 = - 8x^2 - 8y^2 - 48xy`
= `-8 (x^2 + y^2 + 6xy)`
= −8 × 10 ...[from (i)]
= −80
∴ `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
APPEARS IN
RELATED QUESTIONS
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Derivative of cot x° with respect to x is ____________.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`