हिंदी

If x2 + 6xy + y2 = 10, then show that ddd2ydx2=80(3x+y)3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`

योग

उत्तर

x2 + 6xy + y2 = 10        ...(i)

Differentiating both sides w.r.t. x, we get

`2x + 6(x ("d"y)/("d"x) + y) + 2y ("d"y)/("d"x)` = 0

∴ `2x + 6x  ("d"y)/("d"x) + 6y + 2y ("d"y)/("d"x) = 0`

∴ `(2x + 6y) + (6x + 2y) ("d"y)/("d"x) = 0`

∴ `("d"y)/("d"x) = - (x + 3y)/(3x + y)`           ...(ii)

∴ (3x + y) `("d"y)/("d"x)` = − (x + 3y)

Again, differentiating both sides w.r.t. x, we get

`(3x + y) ("d"^2y)/("d"x^2) + ("d"y)/("d"x) (3 + ("d"y)/("d"x)) = - (1 + 3 * ("d"y)/("d"x))`

∴ `3 ("d"y)/("d"x) + (("d"y)/("d"x))^2 + 1 + 3("d"y)/("d"x) = - ("d"^2y)/("d"x^2)`(y + 3x)

∴ `(("d"y)/("d"x))^2 + 6 ("d"y)/("d"x) + 1 = - ("d"^2y)/("d"x^2)`(y + 3x)

∴ `[- ((x + 3y)/(3x + y))]^2 + 6 [(- (x + 3y))/(3x + y)] + 1`

= `-("d"^2y)/("d"x^2)` (y + 3x)           ...[From (ii)]

By solving, we get

`(x^2 + 9y^2 + 6xy - 6xy - 18x^2 - 18y^2 - 54xy + y^2 + 9x^2 + 6xy)/(y + 3x)^2 = - ("d"^2y)/("d"x^2)`(y + 3x)

∴ `- ("d"^2y)/("d"x^2)  (y + 3x)^3 = - 8x^2 - 8y^2 - 48xy`

= `-8 (x^2 + y^2 + 6xy)`

= −8 × 10          ...[from (i)] 

= −80

∴ `("d"^2y)/("d"x^2) = 80/(3x + y)^3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Differentiation - Q.5

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 22) | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

sin (log x)


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×