Advertisements
Advertisements
प्रश्न
Find the second order derivative of the function.
x3 log x
उत्तर
Let, y = x3 log x
Differentiating both sides with respect to x,
`dy/dx = x^3 d/dx log x + log x d/dx x^3`
`= x^3 * 1/3 + log x * 3x^2`
`= x^2 + 3x^2 log x`
Differentiating both sides again with respect to x,
`(d^2 y)/dx^2 = d/dx x^2 + 3 [x^2 d/dx log x + log x d/dx x^2]`
`= 2x + 3 [x^2 * 1/x + log x * 2x]`
= 2x + 3x + 6x log x
= 5x + 6x log x
= x (5 + 6 log x)
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`