Advertisements
Advertisements
प्रश्न
(x2 + y2)2 = xy
उत्तर
Given that: (x2 + y2)2 = xy
⇒ x4 + y4 + 2x2y2 = xy
Differentiating both sides w.r.t. x
`"d"/"dx"(x^4) + "d"/"dx"(y^4) + 2*"d"/"dx"(x^2y^2) = "d"/"dx"(xy)`
⇒ `4x^3 + 4y^3 * "dy"/"dx" + 2[x^2*2y*"dy"/"dx" + y^2*2x] = x"dy"/"dx" + y*1`
⇒ `4x^3 + 4y^3 * "dy"/"dx" + 4x^2y * "dy"/"dx" + 4xy^2 = x "dy"/"dx" + y`
⇒ `4y^3 "dy"/"dx" + 4x^2y "dy"/"dx" - x "dy"/"dx" = y - 4x^3 - 4xy^2`
⇒ `(4y^3 + 4x^2y - x)"dy"/"dx" = y - 4x^3 - 4xy^2`
⇒ `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4y^3 + 4x^2y - x)`
Hence, `"dy"/"dx" = (y - 4x^3 - 4xy^2)/(4x^2y + 4x^2y - x)`.
APPEARS IN
संबंधित प्रश्न
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
log (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
sec(x + y) = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`