Advertisements
Advertisements
प्रश्न
sec(x + y) = xy
उत्तर
Given that: sec(x + y) = xy
Differentiating both sides w.r.t. x
`"d"/"dx" sec(x + y) = "d"/"dx"(xy)`
⇒ `sec(x + y) tan(x + y) * "d"/"dx"(x + y) = x*"dy"/"dx" + y*1`
⇒ `sec(x + y)*tan(x + y) (1 + "dy"/"dx") = x*"dy"/"dx" + y`
⇒ `sec(x + y)*tan(x + y) + sec(x + y)*"dy"/"dx"` = y – sec(x + y).tan(x + y)
⇒ `[sec(x + y)* tan(x + y) - x] "dy"/"dx"` = = y – sec(x + y).tan(x + y)
⇒ `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`
Hence, `"dy"/"dx" = (y - sec(x + y)*tan(x + y))/(sec(x + y)*tan(x + y) - x)`.
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
sin (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
tan–1(x2 + y2) = a
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`