हिंदी

If ax2 + 2hxy + by2 = 0, then show that d2ydx2 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0

योग

उत्तर

ax2 + 2hxy + by2 = 0      ....(i)

Differentiating both sides w.r.t. x, we get

`"a"("2x") + "2h" * "d"/"dx" ("xy") + "b"("2y") "dy"/"dx" = 0`

∴ `2"ax" + 2"h" ["x" * "dy"/"dx" + "y"(1)] + 2"by" "dy"/"dx" = 0` 

∴ `2"ax" + 2"hx" "dy"/"dx" + 2"hy" + 2"by" "dy"/"dx" = 0`

∴ `2 "dy"/"dx" ("hx" + "by") = - 2"ax" - 2"hy"`

∴ `2 "dy"/"dx" = (-2("ax" + "hy"))/("hx" + "by")`

∴ `"dy"/"dx" = (- ("ax" + "hy"))/("hx" + "by")`    ....(i)

ax2 + 2hxy + by2 = 0 

∴ ax2 + hxy + hxy + by2 = 0

∴ x(ax + hy) + y(hx + by) = 0

∴ y(hx + by) = - x(ax + hy)

∴ `"y"/"x" = (- ("ax" + "hy"))/("hx" + "by")`    ...(ii)

From (i) and (ii), we get

`"dy"/"dx" = "y"/"x"`      ....(iii)

Again, differentiating both sides w.r.t. x, we get

`("d"^2"y")/"dx"^2 = ("x" * "dy"/"dx" - "y" * "d"/"dx" ("x"))/"x"^2`

`= ("x" * ("y"/"x") - "y"(1))/"x"^2`    ....[From (iii)]

`= ("y - y")/"x"^2`

`= 0/"x"^2`

∴ `("d"^2"y")/"dx"^2 = 0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १०१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 23) | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

tan–1 x


Find the second order derivative of the function.

sin (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


`sin xy + x/y` = x2 – y


sec(x + y) = xy


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


Derivative of cot x° with respect to x is ____________.


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×