हिंदी

Find d2ydx2, if y = x2⋅ex - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`

योग

उत्तर

y = `"x"^2 * "e"^"x"`

Differentiating both sides w.r.t. t, we get

`"dy"/"dx" = "x"^2 * "d"/"dx" ("e"^"x") * "d"/"dx" ("x"^2)`

`= "x"^2 * "e"^"x" + "e"^"x" ("2x")`

`"dy"/"dx" = ("x"^2 + 2"x") * "e"^"x"`

Again, differentiating both sides w.r.t. x, we get

`("d"^2"y")/"dx"^2 = ("x"^2 + 2"x") * "d"/"dx" ("e"^"x") + "e"^"x" * "d"/"dx" ("x"^2 + 2"x")`

`= ("x"^2 + 2"x") * "e"^"x" + "e"^"x"`(2x + 2)

`= "e"^"x"("x"^2 + 2"x" + 2"x" + 2)`

∴ `("d"^2"y")/"dx"^2 = "e"^"x"("x"^2 + 4"x" + 2)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १०१]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q IV] 21) | पृष्ठ १०१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

sin (log x)


If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


`sin xy + x/y` = x2 – y


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Derivative of cot x° with respect to x is ____________.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Find `(d^2y)/dx^2 if, y = e^((2x + 1))`


Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/(dx^2)  "if", y = e^((2x + 1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×