Advertisements
Advertisements
प्रश्न
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
उत्तर
y = `"x"^2 * "e"^"x"`
Differentiating both sides w.r.t. t, we get
`"dy"/"dx" = "x"^2 * "d"/"dx" ("e"^"x") * "d"/"dx" ("x"^2)`
`= "x"^2 * "e"^"x" + "e"^"x" ("2x")`
`"dy"/"dx" = ("x"^2 + 2"x") * "e"^"x"`
Again, differentiating both sides w.r.t. x, we get
`("d"^2"y")/"dx"^2 = ("x"^2 + 2"x") * "d"/"dx" ("e"^"x") + "e"^"x" * "d"/"dx" ("x"^2 + 2"x")`
`= ("x"^2 + 2"x") * "e"^"x" + "e"^"x"`(2x + 2)
`= "e"^"x"("x"^2 + 2"x" + 2"x" + 2)`
∴ `("d"^2"y")/"dx"^2 = "e"^"x"("x"^2 + 4"x" + 2)`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
sin (log x)
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
`sin xy + x/y` = x2 – y
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Derivative of cot x° with respect to x is ____________.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`