हिंदी

If y = Aemx + Benx, show that d2ydx2 -(m+n)dydx+mny=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = Aemx + Benx, show that `(d^2y)/dx^2  - (m+ n) (dy)/dx + mny = 0`

योग

उत्तर १

Given, y = Aemx + benx   ...(1)

Differentiating both sides with respect to ,

`dy/dx = A  d/dx  e^(mx) + B  d/dx  e^(nx) `

`= A  e^(mx) d/dx  (mx) + B  e^(nx) d/dx  (nx)`

= A · memx + B · nenx     ...(2)

Differentiating both sides again with respect to x,

`(d^2 y)/dx^2 = Am  d/dx  e^(mx) + Bn  d/dx  e^(nx)`

= Am2 emx + Bn2 enx          ...(3)

left side `(d^2 y)/dx^2 - (m + n) dy/dx + mn y `

= Am2 emx + Bn2 enx - (m + n) x (Amemx + Bnenx) + mn (Aemx + Benx)

...[Substituting the value of y from equation (1), `dy/dx` from equation (2) and `(d^2 y)/dx^2` from equation (3)]

= Aemx [m2 - m(m + n) + mn] + Benx [n2 - n (m + n) + mn]

= Aemx [m2 - m2 - mn + mn] + Benx [n2 - mn - n2 + mn]

= Aemx x 0 + Benx x 0 = 0 = right side

shaalaa.com

उत्तर २

Let y = Aemx +  Benx                ....(1)

Differentiating (1) w.r.t x we get

`dy/dx = Ae^(mx). m+ Be^(nx).n = Ame^(mx) + Bn e^(nx)`       ....(2)

Differentiating (2) w.r.t.x, we get,

`(d^2y)/dx^2 = Ame^(mx). m + Bn e^(nx).n`

`= Am^2e^(mx) + Bn^2e^(nx)`

Now,

`(d^2y)/dx^2 - (m + n) dy/dx + mny `

`= Am^2e^(mx) + Bn^2e^(nx) - [(m + n) Ame^(mx) + Bn e^(nx) ] + mn (Ae^(mx) + Be^(nx))`      .....[from (1), (2) and  (3)]

`= Am^2e^(mx) - Bn^2e^(nx) - Am^2e^(mx) - Bmn e^(nx) - Amn e^(mx) - Bn^2e^(nx) + Amn e^(mx) + Bmn e^(nx) = 0`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.7 [पृष्ठ १८४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.7 | Q 14 | पृष्ठ १८४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

`x^20`


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

sin (log x)


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


tan–1(x2 + y2) = a


(x2 + y2)2 = xy


If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1 


The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


Read the following passage and answer the questions given below:

The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3.

  1. Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
  2. Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?

Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×