Advertisements
Advertisements
प्रश्न
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
उत्तर १
Given, y = Aemx + benx ...(1)
Differentiating both sides with respect to ,
`dy/dx = A d/dx e^(mx) + B d/dx e^(nx) `
`= A e^(mx) d/dx (mx) + B e^(nx) d/dx (nx)`
= A · memx + B · nenx ...(2)
Differentiating both sides again with respect to x,
`(d^2 y)/dx^2 = Am d/dx e^(mx) + Bn d/dx e^(nx)`
= Am2 emx + Bn2 enx ...(3)
left side `(d^2 y)/dx^2 - (m + n) dy/dx + mn y `
= Am2 emx + Bn2 enx - (m + n) x (Amemx + Bnenx) + mn (Aemx + Benx)
...[Substituting the value of y from equation (1), `dy/dx` from equation (2) and `(d^2 y)/dx^2` from equation (3)]
= Aemx [m2 - m(m + n) + mn] + Benx [n2 - n (m + n) + mn]
= Aemx [m2 - m2 - mn + mn] + Benx [n2 - mn - n2 + mn]
= Aemx x 0 + Benx x 0 = 0 = right side
उत्तर २
Let y = Aemx + Benx ....(1)
Differentiating (1) w.r.t x we get
`dy/dx = Ae^(mx). m+ Be^(nx).n = Ame^(mx) + Bn e^(nx)` ....(2)
Differentiating (2) w.r.t.x, we get,
`(d^2y)/dx^2 = Ame^(mx). m + Bn e^(nx).n`
`= Am^2e^(mx) + Bn^2e^(nx)`
Now,
`(d^2y)/dx^2 - (m + n) dy/dx + mny `
`= Am^2e^(mx) + Bn^2e^(nx) - [(m + n) Ame^(mx) + Bn e^(nx) ] + mn (Ae^(mx) + Be^(nx))` .....[from (1), (2) and (3)]
`= Am^2e^(mx) - Bn^2e^(nx) - Am^2e^(mx) - Bmn e^(nx) - Amn e^(mx) - Bn^2e^(nx) + Amn e^(mx) + Bmn e^(nx) = 0`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
sin (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`