Advertisements
Advertisements
प्रश्न
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
उत्तर
We have
x=acosθ+bsinθ .....(1)
y=asinθ−bcosθ .....(2)
Squaring and adding (1) and (2), we get
x2+y2=(acosθ+bsinθ)2+(asinθ−bcosθ)2
=a2cos2θ+b2sin2θ+2abcosθsinθ + a2sin2θ+b2cos2θ−2abcosθsinθ
=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)
⇒x2+y2=a2+b2 .....(3)
Differentiating both sides of (3) w.r.t. x, we get
`2x+2ydy/dx=0`
`⇒2ydy/dx=−2x`
`⇒dy/dx=−x/y .....(4)`
Differentiating both sides of (4) w.r.t. x, we get
`Y^2 (d^2y)/(dx^2)-x dy/dx+y`
`=y^2(-(x^2+y^2)/Y63)-x(-x/y)+y` [From (4) and (5)]
`=-(x^2+y^2)/y+x^2/y+y`
`=(-x^2-^2+x^2+Y^2)/y`
`=0`
APPEARS IN
संबंधित प्रश्न
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
ex sin 5x
If y = 5 cos x – 3 sin x, prove that `(d^2y)/(dx^2) + y = 0`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`