Advertisements
Advertisements
प्रश्न
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
उत्तर
We have
x=acosθ+bsinθ .....(1)
y=asinθ−bcosθ .....(2)
Squaring and adding (1) and (2), we get
x2+y2=(acosθ+bsinθ)2+(asinθ−bcosθ)2
=a2cos2θ+b2sin2θ+2abcosθsinθ + a2sin2θ+b2cos2θ−2abcosθsinθ
=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)
⇒x2+y2=a2+b2 .....(3)
Differentiating both sides of (3) w.r.t. x, we get
`2x+2ydy/dx=0`
`⇒2ydy/dx=−2x`
`⇒dy/dx=−x/y .....(4)`
Differentiating both sides of (4) w.r.t. x, we get
`Y^2 (d^2y)/(dx^2)-x dy/dx+y`
`=y^2(-(x^2+y^2)/Y63)-x(-x/y)+y` [From (4) and (5)]
`=-(x^2+y^2)/y+x^2/y+y`
`=(-x^2-^2+x^2+Y^2)/y`
`=0`
APPEARS IN
संबंधित प्रश्न
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`