मराठी

If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that y2 (d2y)/(dx2)-xdy/dx+y=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`

उत्तर

We have

x=acosθ+bsinθ      .....(1)

y=asinθbcosθ      .....(2)

Squaring and adding (1) and (2), we get

x2+y2=(acosθ+bsinθ)2+(asinθbcosθ)2

=a2cos2θ+b2sin2θ+2abcosθsinθ + a2sin2θ+b2cos2θ2abcosθsinθ

=a2(cos2θ+sin2θ)+b2(sin2θ+cos2θ)

x2+y2=a2+b2        .....(3)

Differentiating both sides of (3) w.r.t. x, we get

`2x+2ydy/dx=0`

`⇒2ydy/dx=−2x`

`⇒dy/dx=−x/y                 .....(4)`

Differentiating both sides of (4) w.r.t. x, we get

`Y^2 (d^2y)/(dx^2)-x dy/dx+y`

`=y^2(-(x^2+y^2)/Y63)-x(-x/y)+y`  [From (4) and (5)]

`=-(x^2+y^2)/y+x^2/y+y`

`=(-x^2-^2+x^2+Y^2)/y`

`=0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`


Find the second order derivative of the function.

x2 + 3x + 2


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

log (log x)


Find the second order derivative of the function.

sin (log x)


If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = log (x).


Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,

A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`

and B(x) = [A(x)]T A(x). Then determinant of B(x) ______


If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.


If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.


If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`


Find `(d^2y)/dx^2  "if,"  y= e^((2x+1))`


Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×