मराठी

If x cos(a+y)= cosy then prove that dy/dx=(cos^2(a+y)/sina) Hence show that sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`

Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`

उत्तर

Given that

x cos(a+y)=cosy...1

`=>x=(cosy)/cos(a+y)`

Differentiating both sides of the equation (1), we have,

`x xx(-sin(a+y))(dy)/(dx)+1xxcos(a+y)=-siny(dy)/dx`

`=>[siny-xsin(a+y)](dy)/dx=-cos(a+y)`

`=>[siny-cosy/cos(a+y)sin(a+y)]dy/(dx)=-cos(a+y)`

 `=>[(cos(a+y)xxsiny-cosysin(a+y))/cos(a+y)]dx/dy=-cos(a+y)`

 `=>[sin(a+y-y)]dy/dx=-cos^2(a+y) `

`=>[sina]dy/dx=-cos^2(a+y)`

`=>dy/dx=((-cos^2(a+y))/sina) `

 Differentiating once again with respect to x, we have,

`sina(d^2y)/dx^2=-2cos(a+y)sin(a+y)dy/dx`

`=>sina((d^2y)/dx^2)+2cos(a+y)sin(a+y)dy/dx=0`

`=>sina(d^2y)/dx^2+sin2(a+y)dy/dx=0`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 N

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`


If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`


If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`


Find the second order derivative of the function.

x . cos x


Find the second order derivative of the function.

log x


Find the second order derivative of the function.

x3 log x


Find the second order derivative of the function.

ex sin 5x


Find the second order derivative of the function.

e6x cos 3x


Find the second order derivative of the function.

log (log x)


If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0


If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`


If ey (x + 1) = 1, show that  `(d^2y)/(dx^2) =((dy)/(dx))^2`


If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2


If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`


If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`


Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`


Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2


If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0


`sin xy + x/y` = x2 – y


sec(x + y) = xy


tan–1(x2 + y2) = a


If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`


If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.


If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:


`"Find"  (d^2y)/(dx^2)  "if"  y=e^((2x+1))`


Find `(d^2y)/dx^2` if, y = `e^(2x +1)`


Find `(d^2y)/dx^2` if, `y = e^((2x+1))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×