Advertisements
Advertisements
प्रश्न
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
उत्तर
Given that
x cos(a+y)=cosy...1
`=>x=(cosy)/cos(a+y)`
Differentiating both sides of the equation (1), we have,
`x xx(-sin(a+y))(dy)/(dx)+1xxcos(a+y)=-siny(dy)/dx`
`=>[siny-xsin(a+y)](dy)/dx=-cos(a+y)`
`=>[siny-cosy/cos(a+y)sin(a+y)]dy/(dx)=-cos(a+y)`
`=>[(cos(a+y)xxsiny-cosysin(a+y))/cos(a+y)]dx/dy=-cos(a+y)`
`=>[sin(a+y-y)]dy/dx=-cos^2(a+y) `
`=>[sina]dy/dx=-cos^2(a+y)`
`=>dy/dx=((-cos^2(a+y))/sina) `
Differentiating once again with respect to x, we have,
`sina(d^2y)/dx^2=-2cos(a+y)sin(a+y)dy/dx`
`=>sina((d^2y)/dx^2)+2cos(a+y)sin(a+y)dy/dx=0`
`=>sina(d^2y)/dx^2+sin2(a+y)dy/dx=0`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x = a cos θ + b sin θ, y = a sin θ − b cos θ, show that `y^2 (d^2y)/(dx^2)-xdy/dx+y=0`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
log (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
`sin xy + x/y` = x2 – y
sec(x + y) = xy
tan–1(x2 + y2) = a
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`