Advertisements
Advertisements
प्रश्न
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
उत्तर
Given that: x sin (a + y) + sin a cos (a + y) = 0
⇒ x sin (a + y) = – sin a cos (a + y)
⇒ x = `(-sin"a" * cos("a" + y))/(sin ("a" + y))`
⇒ x = – sin a.cot (a + y)
Differentiating both sides w.r.t. y
⇒ `"dx"/"dy" = - sin"a"*"d"/"dy" cot("a" + y)`
⇒ `"dx"/"dy" = -sin"a"[-"cosec"^2("a" + y)`
⇒ `"dx"/"dy" = sin"a"/(sin^2("a" + y))`
∴ `"dy"/"dx" = 1/("dx"/"dy")`
= `1/(sin"a"/(sin^2("a" + y))`
Hence, `"dy"/"dx" = (sin^2("a" + y))/sin"a"`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
x3 log x
Find the second order derivative of the function.
ex sin 5x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
`sin xy + x/y` = x2 – y
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`